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Abstract
Preterm birth is a major pediatric health problem that perturbs the genetically deter-

mined program of corticogenesis of the developing brain. As a consequence, prematurity
has been strongly associated with adverse long-term neurodevelopmental outcome that may
persist even into adulthood. Early characterization of the underlying neuronal mechanisms
and early identification of infants at risk is of paramount importance since it allows better
development of early therapeutic interventions aiming to prevent adverse outcomes through
resilience. This dissertation aims to investigate the consequences of preterm birth on brain
function and structure and their relation to adverse neurodevelopmental outcome, as well
as to unveil the effect of an early music intervention on brain function. Research to date has
mainly focused on the effect of early interventions on the long-term outcome but not on
the effect of those interventions on brain function in preterm populations. Moreover, a clear
consensus about the predictive utility of MRI volumetric data for long-term outcomes is still
missing.

This dissertation consists of three main parts. First, we investigate the effects of an early
musical intervention in preterm infants using a task-based and resting-state fMRI paradigm.
We explore brain effective connectivity changes during task and functional connectivity (FC)
modulations at rest. We show that music exposure during hospitalization promotes brain
auditory processing maturation. We find increased FC between the auditory cortex and
regions involved in familiarity and music processing, such as the thalamus and caudate
nucleus. Moreover, we report increased rs-FC in regions involved in associative memory and
multisensory processing, such as the calcarine and angular gyrus with a dosage-dependent
effect on this modulation. Secondly, we examine brain volumetric development and whether
brain volumes are associated with cognitive and behavioural long-term outcomes. We find
that perinatal risk factors, such as asphyxia and sepsis have an impact on brain tissue volume.
We also find that cognitive and behavioural outcomes are strongly associated with parental
SES and that brain tissue volumes at TEA have moderate predictive power. Next, inspired by
studies that have characterized the progression of neurodegenerative diseases, we employ an
advanced technique to unveil the sequence of biological events along the course of prematurity.
Our novel findings might be of clinical use as they allow more targeted early interventions
aiming to improve long-term outcomes. Finally, we propose a framework that enables the
spectral graph theory analysis of the functional connectome at the voxel level. Our results
indicate the presence of both functional gradients and community structure revealing fine-
grained connectivity patterns. The proposed framework opens a new avenue for spectral
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graph theory research at the voxel level.

Keywords: Preterm birth, functional MRI, neurodevelopmental outcome, connectomics, brain
networks, multivariate modeling.
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Résumé
La prématurité est un problème de santé publique majeur qui perturbe le programme

génétique qui contrôle le processus de corticogenèse du cerveau pendant le développement.
En conséquence, la prématurité peut entraîner des séquelles neurodéveloppementales sur
le long terme, qui peuvent persister même à l’age adulte. La caractérisation des mécanismes
neuronaux sous-jacents et l’identification précoce des nourrissons à risque sont d’une impor-
tance capitale car elles permettent de déployer de meilleures interventions thérapeutiques
anticipées visant à prévenir les effets indésirables grâce à la résilience. Cette thèse vise à
étudier les conséquences de l’accouchement prématuré sur la fonction et la structure du
cerveau et leur relation avec les complications neurodéveloppementales, ainsi que de dévoiler
l’effet d’une intervention musicale précoce sur la fonction cérébrale. La recherche à ce jour
s’est principalement concentrée sur l’effet des interventions précoces aux résultats à long
terme, mais pas sur l’effet de ces interventions sur la fonction cérébrale dans les populations
prématurées. En outre, il n’existe toujours pas un consensus clair sur l’utilité prédictive des
données volumétriques IRM pour les résultats à long terme.

Cette thèse se compose de trois parties principales. D’abord, nous étudions les effets
d’une intervention musicale précoce chez les nourrissons prématurés en utilisant un para-
digme d’IRMf fondé sur les tâches et l’état de repos. Nous explorons les changements de
connectivité effective du cerveau pendant les modulations de tâche et de connectivité fonc-
tionnelle (FC) au repos. Nous montrons que l’exposition à la musique pendant l’hospitalisation
favorise la maturation du traitement auditif cérébral. Nous trouvons une FC accrue entre
le cortex auditif et les régions impliquées dans la familiarité et le traitement de la musique,
comme le thalamus et le noyau caudé. De plus, nous rapportons une augmentation de la FC
au repos dans les régions impliquées dans la mémoire associative et le traitement multisen-
soriel, comme la scissure calcarine et le gyrus angulaire avec un effet dépendant de la dose
sur cette modulation. Deuxièmement, nous examinons le développement volumétrique du
cerveau et si les volumes cérébraux sont associés à des résultats cognitifs et comportementaux
à long terme. Nous constatons que les facteurs de risque périnatals tels que l’asphyxie et la
septicémie ont un impact sur le volume du tissu cérébral. Nous constatons également que
les résultats cognitifs et comportementaux sont fortement associés au SSE parental et que
les volumes de tissu cérébral à TEA peuvent apporter des prédictions modérées. Ensuite,
inspirés des études qui ont caractérisé la progression des maladies neurodégénératives, nous
utilisons une technique avancée pour dévoiler la séquence des événements biologiques au
cours de la prématurité. Nos nouvelles découvertes pourraient être d’une utilité clinique car
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Résumé

elles permettent des interventions précoces plus ciblées visant à améliorer les résultats à
long terme. Enfin, nous proposons un cadre qui permet l’analyse de la théorie spectrale des
graphes du connectome fonctionnel au niveau du voxel. Nos résultats indiquent la présence
à la fois de gradients fonctionnels et d’une structure communautaire révélant des modèles
de connectivité à grain fin. Le cadre proposé ouvre une nouvelle voie pour la recherche en
théorie spéctrale des graphes au niveau du voxel.

Mots-clés: naissance prématurée, IRM fonctionnelle, séquelles neurodéveloppementales,
étude connectomique, réseaux cérébraux, modélisation multivariée.
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1 Introduction

1.1 Motivation

Preterm birth, defined as the birth that occurs prior to 37 weeks of gestation, is considered a
major pediatric health problem. Every year approximately 15 million babies are born preterm
worldwide and the main causes underpinning preterm birth have yet to be fully understood
(Blencowe et al., 2013). The economic impact of preterm birth is tremendous as it has been
estimated that the hospitalization cost of preterm infants ranges from 25-fold to 68-fold those
of full-term born infants, depending on the severity of each case (Tommiska et al., 2003; Beam
et al., 2020). Moreover, prematurity has been reported to be the direct cause of 35% of all
neonatal deaths (Blencowe et al., 2013) and preterm-born infants (PT) have an increased risk of
suffering from chronic health issues, infections, as well as feeding problems. Although recent
advances in neonatal care have increased the survival rates for these neonates, prematurity
perturbs the genetically determined program of corticogenesis of the developing brain and
it has been strongly associated with adverse neurodevelopmental outcome (Delobel-Ayoub
et al., 2009; Marlow et al., 2005; Arpino et al., 2010; Doyle and Anderson, 2010). These adverse
outcomes include cognitive, motor, and behavioural problems such as thinking and learning
disabilities, walking problems, and poor social/interactive skills, respectively. Finally, preterms
have three times the odds of meeting criteria for psychiatric diagnoses, compared to full-term
born children (Treyvaud et al., 2013). Taken all these into account, the unveiling of the
underlying neuronal mechanisms of preterm birth is crucial for the development of targeted
and individualized early therapeutic interventions aiming to restore brain development and
prevent adverse outcomes.

Magnetic resonance imaging (MRI) is a non-invasive, in vivo, neuroimaging technique that
enables us to study the human brain. Due to its non-invasive nature, MRI is a perfect tool
to study the sequelae of preterm birth and identify relevant neuroimaging biomarkers that
are associated with adverse neurodevelopmental outcomes. Using this imaging technique, a
plethora of neuroimaging studies have investigated the consequences of prematurity on brain
microstructure, function, and tissue composition. Brain alterations due to preterm birth have
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Chapter 1. Introduction

been associated to executive functions problems (Wehrle et al., 2018; Peterson et al., 2003;
Gimenez et al., 2006), motor and cognitive disabilities (Pineda et al., 2014; Keunen et al., 2016;
Nosarti et al., 2014; Peterson, 2000), psychiatric (Johnson and Marlow, 2011; Sinclair, 2012)
and socio-emotional disorders (Treyvaud et al., 2013; Johns et al., 2019), hyperactivity and
inattention (Montagna et al., 2020; Rommel et al., 2017) as well as to emotional processing
deficits (Papini et al., 2016; Healy et al., 2013).

To prevent these adverse outcomes, early developmental interventions such as kangaroo
mother care, maternal voice, and tactile stimulation have been provided in the clinical setting
aiming to restore function and improve overall outcomes for these infants. Several studies have
investigated the effectiveness of these interventions reporting a significant positive impact
on cognitive development (Spittle et al., 2015), improved short-term growth and feeding
outcomes, reduced respiratory support, decreased length of hospitalization, reduction of
apnea or bradycardia, as well as improved neurodevelopmental outcomes at 2 years old age
(Symington and Pinelli, 2006; Filippa et al., 2017; Anderson and Patel, 2018; Pineda et al., 2017;
Haslbeck, 2012). Recently, new interventions have been introduced such as music therapy
(Lejeune et al., 2019). However, there is little research about the effect of such interventions on
brain function in preterm infants.

Thanks to its high spatial resolution and specificity, MRI can be an excellent tool to study the
effectiveness of early interventions, to unveil the sequence of brain abnormality characterizing
preterm birth, and to explore the potential associations between brain abnormalities and
outcome.

1.2 Dissertation organization and main contributions

The present doctoral thesis aims to provide novel insights into the consequences of preterm
birth on brain function and structure, as well as to investigate the effect of early interventions
on the preterm brain, through the development of appropriate state-of-the-art methods and
frameworks. Another objective of this dissertation is the characterization of the sequence
of abnormality underlying preterm birth as well as the association of brain abnormalities
to adverse neurodevelopmental outcomes. The thesis is organized as a compilation of two
already published manuscripts, one manuscript submitted for publication, and three preprints
in preparation for submission. Chapter 2 serves as the background for the studies presented in
the following chapters, providing first an introduction to magnetic resonance imaging (MRI), a
powerful, non-invasive method to study brain function and structure, followed by an overview
of the state-of-the-art analytical tools for the different imaging techniques that are based on
MRI. Next, the clinical aspects of preterm birth, as well as recent findings concerning the
consequences of this major public health problem on the brain, are presented. Finally, a
summary of the challenges and considerations in the neonatal neuroimaging field is provided.
Chapters 3-5, include published manuscripts and articles in preparation that provide both
novel insights but also complement existing knowledge. Finally, in Chapter 6, the conclusions

2



1.2. Dissertation organization and main contributions

and future perspectives of the current research work are reported.

In the remainder of this section, a summary of the main research questions addressed in the
context of the present dissertation and the contributions of each manuscript are provided.
Throughout all the studies presented in this thesis, I have performed the data processing,
statistical analysis, and visualization. Furthermore, I wrote or contributed equally to the
manuscript preparation, and submission and revisions, where applicable. Finally, I would like
to acknowledge that the research presented in this thesis is an outcome of interdisciplinary
collaboration among several people.

3



Chapter 1. Introduction

Motivation
Preterm birth
• 15 million babies are born preterm every year

• Increased risk of suffering from neurodevelopment adverse outcome 

• Deficits may persist even into adulthood

• Early developmental interventions can revert damage through brain resilience

Multivariate and predictive modeling
• MRI     non-invasive brain imaging technique     ideal to study the developing brain

• The effectiveness of early interventions on brain connectivity has not been studied

• Predictive utility of brain tissue volumes debate      more studies are needed

• Disease progression following preterm birth has yet to be investigated

• Parcellation of brain      sacrifice spatial resolution      data-driven methods are crucial

Contributions
Chapter 3: Unveiling the effects of intervention in preterm infants with task-based & resting-state fMRI

• Psychophysiological interaction (PPI) analysis

• Brain effective connectivity of the auditory cortex (seed)

• Music exposure during hospitalization promotes brain auditory 

maturation 

Lordier*, Loukas* et al., NeuroImage, 2018

Loukas*, Lordier* et al., Human Brain Mapping, submitted
• Partial least squares multivariate (PLS) analysis

• Connectome-based statistical analysis

• Unveiled multivariate dosage-dependent modulation 

patterns in resting-state functional connectivity

Chapter 4: Predictive utility of brain volumes for cognitive and behavioural long-term outcomes

• Longitudinal study of tissue growth in preterm infants

• Predictive modeling of brain volumetric data: linear discriminant analysis 

(LDA), model comparison

• Perinatal brain characteristics influence later functional development. 

• Socioeconomic status is associated with adverse long-term outcome

Gui, Loukas et al., NeuroImage, 2019

Loukas*, Liverani* et al., preprint, 2021
• Multivariate predictive modeling: support vector machines (SVM)

• Permutation importance assessments of best predictors

• Different sets of perinatal data predict different subcategories of 

behavioural outcome 

Chapter 5: Advanced models for neurodevelopment

• Event-based modeling (EBM)

• Unveiled the disease progression underlying prematurity - progression sequence

• Brainstem is the first to become abnormal while subcortical GM the last

Loukas et al., preprint, 2021

Loukas et al., preprint, 2021
• Data-driven, atlas-free, novel framework for the estimation of modularity & 

laplacian at the voxel level 

• Recovered meaningful dominant patterns at the voxel-level

• Functional gradients and community structure is present at the voxel level

Figure 1.1 – Thesis overview: Main contributions on the underlying brain function in preterm
birth.
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1.2. Dissertation organization and main contributions

Chapter 3: Unveiling the effects of intervention in preterm infants with task-based
and resting-state fMRI

Soon after birth, preterm infants are admitted to the neonatal intensive care unit (NICU) where
life support is provided and early developmental interventions aiming to restore development
and prevent adverse outcomes are administrated (Delobel-Ayoub et al., 2009; Marlow et al.,
2005; Arpino et al., 2010; Doyle and Anderson, 2010). Recently, musical interventions have
been introduced in the clinical setting. To the best of our knowledge, at the time of this
publication, no previous study has investigated the effect of such interventions on brain
functional connectivity in preterm infants using fMRI. This chapter includes two fMRI studies.
In the first study, we investigate the brain responses (task-based fMRI) of preterm infants that
underwent musical intervention during hospitalization. On the other hand, in the second
study, we explore the resting-state brain connectivity changes following the presentation of the
same music used during the intervention, unveiling the beneficial effects of the early musical
intervention.

Section 3.1: Music processing in preterm and full-term newborns: A psychophysiological
interaction (PPI) approach in neonatal fMRI (Journal Article)

Lordier L*, Loukas S*, Grouiller F, Vollenweider A, Vasung L, Meskaldji DE, Lejeune F, Pittet MP,
Borradori Tolsa C, Lazeyras F, Grandjean D, Van De Ville D, and Hüppi PS, Music processing in
preterm and full-term newborns: A psychophysiological interaction (PPI) approach in neonatal
fMRI, Neuroimage, 2019185:857-864, doi: 10.1016/j.neuroimage.2018.03.078.

- What are the neural processes underlying music processing in preterm infants?
- What is the effect of music therapy during NICU hospitalization on brain function?
- Is brain responding the same in preterm infants that were previously exposed to the music,
compared to control preterm infants?

How the preterm brain processes music is an important question to ask before promoting
the enrichment of the neonatal environment with music. In this study, we explore the brain
networks implicated in music processing in newborns as well as the effect of music exposure
during hospitalization on brain functional connectivity. Using task-based fMRI and by em-
ploying a psychophysiological interaction (PPI) analysis, we unveil, for the first time, the brain
networks involved in music processing in preterm infants and we show that music exposure
during hospitalization promotes brain auditory processing maturation. These novel findings
highlight the beneficial aspects of early musical intervention on brain function in preterm
infants.
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Section 3.2: Musical memories in newborns: A resting-state functional connectivity study
(Submitted Journal Article)

Loukas S*, Lordier L*, Meskaldji DE, Filippa M, Sa de Almeida J, Van De Ville D, and Hüppi PS,
Musical memories in newborns: A resting-state functional connectivity study, Human Brain
Mapping, 2021, Submitted.

- How does music listening modify the distributed resting-state brain networks in preterm and
full-term newborns?
- Is there an intervention dosage effect on this modulation?
- Can we find brain traces of memory engrams?

While task-based fMRI paradigms allow us to understand how the brain works under specific
cognitive demands or tasks, resting-state fMRI analyses provide valuable insight into intrinsic
brain function (Fox, 2010; Lee et al., 2012). Using the same population as in the previous
study, we investigate the effect of music listening on the resting-state functional connectivity
(rs-FC) using connectomics-based statistical frameworks. Furthermore, to investigate the
potential dosage effect of prior music listening on the rs-FC, we employ a multivariate partial
least squares (PLS) correlation approach to associate the post music listening changes in
rs-FC with the occurrence of the prior musical intervention - i.e., the dosage. We show that
all infants experience changes in their rs-FC after music listening and that preterm infants
who were previously repeatedly exposed to music increase their rs-FC between brain regions
known to be involved in associative memory and multi-sensory processing. Finally, we report
a dosage-dependent effect on this modulation.

Chapter 4: Predictive utility of brain volumes for cognitive and behavioural long-
term outcomes

While functional MRI studies provide valuable insight into brain function, volumetric analyses
are needed for the characterization of brain tissue abnormalities due to preterm birth (PTB).
Even in the absence of major brain injury, PTB is often characterized by the presence of subtle
alterations of cerebral structures, leading to potential disruption in the typical progression of
a child’s development and subsequent functional consequences. Some studies have reported
associations of brain volumetric data with adverse neurodevelopmental outcome (Peterson
et al., 2003; Beauchamp et al., 2008; Thompson et al., 2008) while others not (Shah et al., 2006;
Lind et al., 2010; Lee et al., 2016). Moreover, recent reviews concluded that, so far, there is
limited evidence regarding the value of neonatal brain volumetric information in predicting
neurodevelopmental outcome in childhood (Keunen et al., 2012; Anderson et al., 2015). Thus,
more studies aiming to investigate the predictive power of volumetric and clinical, as well as
perinatal data are needed to shed more light on this open debate.

This chapter includes two volumetric MRI studies. The first study aims to investigate longitudi-
nal brain development between birth and TEA in a cohort of relatively healthy PT infants, and
to identify potential predictive biomarkers for the long-term neurodevelopmental outcome.
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To the best of our knowledge, at the time of the publication, only a limited number of studies
have tried to explore the association of longitudinal brain volumes with outcomes beyond 24
months of age. Finally, the second study tries to disentangle the association between brain
volumes measured at TEA and long-term behavioural outcomes assessed through parental
questionnaires in a preterm population.

Section 4.1: Longitudinal study of neonatal brain tissue volumes in preterm infants and
their ability to predict neurodevelopmental outcome (Journal Article)

Gui L, Loukas S, Lazeyras F, Hüppi PS, Meskaldji DE, and Borradori-Tolsa C, Longitudinal study
of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelop-
mental outcome, NeuroImage, 2019, 728-741, https://doi.org/10.1016/j.neuroimage.2018.06.034.

- How does the longitudinal brain development of preterm infants evolve between birth and
TEA?
- Are there brain asymmetries already present at birth or at TEA?
- Can we predict long-term cognitive/motor outcomes using brain volumetric data?

Several studies have reported associations between neurodevelopmental outcomes and brain
tissue volumes at term-equivalent-age (TEA) (Peterson et al., 2003; Beauchamp et al., 2008;
Thompson et al., 2008; Keunen et al., 2016). Interestingly, others did not find evidence of
such associations or found that these associations were weakened or not significant after
adjustment for perinatal variables (Shah et al., 2006; Lee et al., 2016). In addition, a clear
consensus about the predictive utility of MRI brain volumes for the prediction of long-term
neurodevelopmental outcome has yet to be established (Keunen et al., 2012; Anderson et al.,
2015). Therefore, more studies are needed in order to shed light on this ongoing controversy.

Early prediction of neurodevelopmental outcomes requires the identification of early perinatal
biomarkers. In the context of this study, we first investigate the longitudinal brain development
between birth and TEA in a cohort of relatively healthy PT infants. Furthermore, we investigate
whether brain asymmetries are already present at birth or TEA, and finally, we explore the
predictive utility of brain volumetric data in terms of cognitive/motor outcomes prediction at
18-24 months and 5 years of age using linear discriminant analysis (LDA). We demonstrate
that cognitive outcomes at 18-24 months and 5 years of age are strongly associated with
parental SES and that volumetric data at birth and at TEA contribute to the prediction of motor
outcomes at 18-24 months, while brain volumes at TEA and tissue growth rates contribute to
the prediction of the cognitive outcome at 5 years of age. These results suggest that perinatal
brain characteristics in PT infants may influence later functional development.
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Section 4.2: Behavioral outcome of very preterm children at five years of age: Prognostic
utility of brain tissue volumes at TEA and perinatal factors (Journal Preprint)

Liverani MC*, Loukas S*, Gui L, Pittet MP, Pereira M, Bickle-Graz M, Truttmann AC, Hüppi PS,
Meskaldji DE, and Borradori Tolsa C, Behavioral outcome of very preterm children at five years
of age: Prognostic utility of brain tissue volumes at TEA and perinatal factors, Preprint.

- Is SDQ questionnaire able to distinguish behavioural problems among children at risk and
those that are not?
- Is there a comorbidity between the behavioural symptoms as assessed by the SDQ questionnaire?
- Can we use brain volumetric data at TEA to predict behavioural outcome at 5 years of age in
very preterm infants?

In a similar context to the previous study, we explore the association between brain volumes
and behavioural long-term outcomes assessed via parental questionnaires in a cohort of
preterm infants. We aim to enlighten the prognostic utility and usefulness of magnetic res-
onance imaging at birth, a point that is still controversial. Thus, the main objective of the
study is to evaluate the predictive utility of brain volumetric data at TEA in terms of long-term
behavioural outcome prediction using support vector machines. Additionally, we explore
the contribution of perinatal factors and parental socioeconomic status to the prediction of
the behavioural outcome at 5 years of age. We show that brain tissues at TEA could serve as
biomarkers for the long-term prediction of emotional problems. Finally, we find that clinical
variables predict long-term hyperactivity-related problems and that SES is associated with
conduct and peer-relations problems.

Chapter 5: Advanced models for neurodevelopment

While functional, structural, and volumetric brain alterations due to prematurity have been
previously investigated (Dewey et al., 2019; Karolis et al., 2017; Alexander et al., 2019; Gui et al.,
2019; de Almeida et al., 2021; Inder, 2005), the exact sequence of brain abnormality following
preterm birth has never been explored. Understanding the sequence of biological events of the
encephalopathy of prematurity can provide valuable insights into the underlying pathology
and can help intervention development. To this end, we employ an advanced model aiming to
characterize the sequence of brain abnormalities. To the best of our knowledge, no previous
study has tried to characterize the disease progression sequence of the encephalopathy of
prematurity.

In the first section of this chapter, an advanced probabilistic model is used on brain tissue
volumes on a large cohort of preterm infants aiming to estimate the sequence of the pathology
in a probabilistic sense. In the second section of this chapter, we introduce a novel, data-
driven framework for the estimation of the Laplacian and the modularity spectra at the voxel
level. The proposed method can characterize, for the first time, the brain’s fundamental
organizational principles at the voxel level, without the use of a parcellation scheme. We
validate and illustrate the importance of the proposed method using 40 subjects from the
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Human Connectome Project (HCP).

Section 5.1: Fine-grained, image-based disease progression characterization of prematu-
rity (Journal Preprint)

Loukas S, Oxtoby N, Meskaldji DE, Gui L, Van De Ville D, Hüppi PS, and Alexander D, Fine-
grained, image-based disease progression characterization of prematurity, Preprint.

- Can we unveil the sequence of abnormality underlying the encephalopathy of prematurity?
- Which are the brain regions that become abnormal first?

Neurodevelopment is a dynamic process characterized by large macroscopic changes where
brain abnormality compensation mechanisms are highly present (Young et al., 2020; de Silva
et al., 2020). Conditions such a preterm birth may change the dynamic process of neurode-
velopment and lead to adverse neurodevelopmental outcomes. Thus, understanding the
sequence of biological events along the course of prematurity can provide valuable insights
into the underlying pathophysiology and can help develop more targeted interventions.

In this study, we employ a data-driven approach to unveil the disease progression of prematu-
rity, producing a fine-grained estimation of the sequence of brain abnormality in prematurely-
born infants at TEA. The hypothesis is that preterm birth alters the dynamic process of neu-
rodevelopment, similarly to disease progression, and thus, advanced disease progression
models might be of potential clinical use. Our novel findings suggest that there is a robust
ordering of brain tissue volume abnormality underpinning encephalopathy of prematurity at
term age.

Section 5.2: A new framework for high-resolution spectral analysis of resting-state fMRI
functional connectivity (Journal Preprint)

Loukas S, Meskaldji DE, Hüppi PS, and Van De Ville D, A new framework for high-resolution
spectral analysis of resting-state fMRI functional connectivity, Preprint.

- How can we perform spectral graph theory analysis at the voxel level?
- Are there functional gradients and community structure at the voxel level?
- Can we recover meaningful modularity and laplacian-driven voxel-wise brain maps from
resting-state fMRI data?

The investigation of functional connectomes has revealed interesting network-related char-
acteristics such as small-world (Bassett and Bullmore, 2016), rich-hub (van den Heuvel and
Sporns, 2011), and scale-free organization (Eguíluz et al., 2005). Furthermore, spectral graph
theory has revealed the presence of a modular (Kabbara et al., 2019; Betzel et al., 2017; Zhi-
galov et al., 2017; Sporns and Betzel, 2016) and large-scale cortical gradient-based organiza-
tion(Margulies et al., 2016; Huntenburg et al., 2018). While these studies provide valuable
insights into brain function and organization, in most cases, the functional connectome is
constructed based on a subjective, non-trivial choice of a predefined brain parcellation atlas.
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This is done due to the high dimensionality of the fMRI data that prohibits the connectomics
analysis at the voxel level. Importantly, it has been shown that the atlas resolution can affect
the results and statistical outcomes of connectomics studies (Bellec et al., 2015; Wang et al.,
2009; de Reus and van den Heuvel, 2013).

In this work, we introduce a framework that enables the spectral graph theory analysis at
the voxel level overcoming the aforementioned limitations. To validate our framework, we
estimate the group-level modularity and Laplacian spectrum of 40 subjects from the Human
Connectome Project. Our results indicate the presence of both functional gradients and
community structure at the voxel level revealing fine-grained, dominant, connectivity patterns.
The proposed framework opens a new avenue for spectral graph theory research at the voxel
level. Finally, the code developed to perform the analysis described in this work has been
made available at https://github.com/seralouk/Voxel_wise_Laplace_Modularity.
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2 Background

Magnetic resonance imaging (MRI) provides a non-invasive, in vivo technique to study brain
function and structure. Over the past decades, MRI has provided valuable insights and has
played a central role in studying the neonatal brain and identifying relevant neuroimaging
biomarkers. The advantages, as well as disadvantages of this technique, can be better appre-
ciated after understanding the principles underlying this neuroimaging technique. In this
chapter, the principles of MRI and the different neuroimaging techniques are first introduced.
Next, an overview of the state-of-the-art analytical tools for neuroimaging data is provided,
followed by the introduction of the clinical aspects and implications of preterm birth. Finally,
the main challenges and considerations in the neonatal neuroimaging field are summarized.

2.1 Magnetic resonance imaging (MRI) and brain research

Magnetic resonance imaging (MRI) allows us to study the anatomical structure, function,
and tissue composition of the human brain, based on nuclear magnetic resonance (NMR).
NMR refers to the interaction effects of specific atomic nuclei when they are exposed to radio-
frequency (RF) waves, in the presence of an external static magnetic field. Paul Lauterbur was
the first to create a 2D NMR image in 1973 (Lauterbur, 1973) and Raymond Damadian was
the first to show that healthy tissue and tumors can be distinguished using MRI (Damadian
et al., 1977), illustrating the tremendous clinical value of the technique for human imaging
and pathology.

The main biologically relevant element that makes the use of MRI possible is the hydrogen (1H)
nucleus. It is estimated that the human body is made of approximately 63% of hydrogen atoms
(Chou and Carrino, 2007). Each atomic nucleus consists of neutrons and protons, resulting
always in a positive net charge. Moreover, specific atomic nuclei such as the hydrogen nucleus
are characterized by an effect known as ‘spin’. Conceptually, the nucleus is spinning around
its axis inducing a magnetic moment that results in a local magnetic field (see Figure 2.1a).
However, the magnetic moment of a single nucleus is small and undetectable, and the spinning
directions of the hydrogen nuclei are considered to be random in the absence of an external
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magnetic field.

When a strong, external magnetic field (B0) is applied, the protons of the hydrogen nuclei
align either in parallel or perpendicular to this field. Typically, the external static magnetic
field is produced by a large electromagnet (1.5 to 7 Tesla) that is part of the MRI machine.
The nuclei alignment, along the direction of B0, results in a detectable net magnetization
(M0) in the tissue (see Figure 2.1b). Furthermore, the aligned protons precess about the
external magnetic field, at random phases, with an angular frequency according to the Larmor
frequency (Larmor, 1897). The angular frequency is proportional to the strength of the external
magnetic field (B0). Next, RF transmitter coils are used to excite the aligned net magnetization
(M0) in the tissue, by transmitting an RF pulse (B1) that is perpendicular to the external static
magnetic field (B0). This procedure is known as ‘RF excitation’ and involves the ‘flipping’ of
the net magnetization away from the longitudinal axis i.e., the axis that is parallel to B0, to the
transverse plane, which is orthogonal to B0 (Grover et al., 2015; Bolas, 2016) (see Figure 2.1c).

When the net magnetization is tipped to the transverse plane, it can be detected by another
hardware part of the machine, the receiver coil. In more detail, when the RF excitation is
over, the magnetization starts to return to its thermal equilibrium through two processes:
the transverse relaxation (i.e., the transverse magnetization begins to diminish, described by
the time constant T2) and the longitudinal relaxation (i.e., the longitudinal magnetization is
returning to its original position, parallel to B0, described by the time constant T1) (Bolas, 2016;
Soher et al., 2007). T2 is defined as a time constant for the decay of transverse magnetization
due to natural spin-spin interactions however, in reality, the transverse magnetization decays
faster and this effect is denoted as T2

*. T2
* is a product of inhomogeneities in the main

magnetic field due to susceptibility-induced field distortions produced by the tissue or the
magnet. Finally, during the relaxation procedures, a measurable current is induced in the
receiver coil (Free induction decay, see Figure 2.1d). This current corresponds to the raw MR
signal (Crooks and Hylton, 1994).

Moreover, another important aspect of the NMR signal acquisition is its spatial encoding.
Magnetic field gradients, positioned in three dimensions within the MR system, are used to
perturb the external, static magnetic field (B0) in a linear way. Thus, the gradients control
the spatial inhomogeneity of the magnetic field (Brown and Semelka, 2011) and nuclei at
different positions will have different resonance frequencies. This property allows the image
reconstruction using the inverse Fourier transform (see Figure 2.1e) in three dimensions with
a spatial resolution of 1 to 3 mm (Plewes and Kucharczyk, 2012; Paschal and Morris, 2004).

Finally, different types of MRI images can be acquired by altering the repetition (TR) and
echo time (TE). TR refers to the time interval between consecutive RF pulse excitations while
TE is the time between the RF pulse application and maximum MR signal in the receiver
coil. In a typical neuroscience experiment, depending on the choice of these two parameters,
the output MRI images will emphasize different tissues such as the grey, white matter, or
cerebrospinal fluid (CSF). The most common types of MRI images include the T1-weighted
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Figure 2.1 – a) The spin of a nucleus. b) Under an external magnetic field (B0) these nuclei
align with the field and precess around it at a specific angular frequency. c) An RF pulse, that
is perpendicular to the main field (B0), is applied to flip the net magnetization from the z into
the xy plane. Magnetization in this plane induces a detectable signal in the receiver coil. a),
b) and c) were adapted with permission from Brindle (2008). d) The magnitude of the raw
(k-space) MR data in an array format and e) the magnitude of the Fourier transform of the raw
data in the image space. d) and e) were adapted with permission from Paschal and Morris
(2004).

and T2-weighted images. T1-weighted images are used to characterize anatomic structures
whereas T2-weighted images are useful for identifying underlying pathological processes. The
anatomical images used in this work were obtained based on these aforementioned principles.
The exact parameters of the MRI sequence are reported within each study.
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2.1.1 Structural connectivity

In the previous section (section 2.1), an overview of the main MRI principles that enable the
acquisition of three-dimensional anatomical brain images was provided. Based upon those
principles, brain images that reflect microstructural properties of the brain can be obtained.

Recent advances in magnetic resonance imaging (MRI) such as the Diffusion-weighted Imag-
ing (DWI) technique, have allowed the non-invasive assessment of the microstructural proper-
ties and organization within the brain tissue based upon the dispersion of water molecules
(Fink and Fink, 2018; Bodini and Ciccarelli, 2014; Bihan, 2014). DWI was first developed aiming
to detect, in vivo, acute ischemic stroke (Baird and Warach, 1998), as well as brain tumors and
multiple sclerosis (Larsson et al., 1992; Kono et al., 2001).

Diffusion-weighted imaging (DWI) enables the non-invasive, in vivo, quantification of water
molecule movement in the brain. The main principle underlying DWI is that molecular
diffusion follows the Brownian motion (or pedesis) rules. In more detail, when the water
molecules are unconstrained (in terms of physical boundaries) their movement is expected
to be random and equally probable to occur across all possible directions in space. This
random, unconstrained movement is often described as ‘isotropic’ or ‘gaussian’ diffusion
process. However, the motion of water molecules in structured environments such as the
brain is constrained due to the physical boundaries of the underlying medium (Pandit et al.,
2013). In the brain, the microstructure of the white (WM) and grey matter (GM) brain tissues
(i.e., the presence of axons, neuronal cell bodies, glial cells, etc.) comprises a heterogeneous
environment and constrains the diffusion of the water molecules. It has been shown that
the diffusion in the white matter tends, in principle, to be parallel to the white matter tracts
instead of perpendicular (Doran et al., 1990; Pandit et al., 2013). Thus, the diffusion of the water
molecules within the WM is constrained and not equal to all directions. This phenomenon
is termed as ‘anisotropic’ or ‘non-gaussian’ diffusion process (Chenevert et al., 1990; Doran
et al., 1990).

To mathematically model the anisotropic diffusion in the brain, Basser and colleagues pro-
posed the use of diffusion tensors (Basser et al., 1994; Basser and Jones, 2002). The diffusion
tensor describes the properties of a three-dimensional ellipsoid and the tensor’s definition
requires the acquisition of diffusion neuroimaging data in at least six non-collinear directions
(Jones and Leemans, 2010). This acquisition procedure is known as Diffusion Tensor Imaging
(DTI) (Basser et al., 1994). More specifically, a tensor is fitted at each brain voxel, produc-
ing a brain diffusion map. This map encodes the magnitude and dominant direction of the
underlying diffusion process. Thus, by tracking across voxels, the dominant directions form
fiber tracts (streamlines of the WM fibers) along the most likely direction that the diffusion
occurred. This technique is known as tractography (Pandit et al., 2013; Grover et al., 2015).

An example of isotropic and anisotropic diffusion in the brain modeled by diffusion tensors is
shown in Figure 2.2. The eigenvalues and eigenvectors of the fitted tensor define the shape
(magnitude) and orientation (direction) of the ellipsoid planes, respectively (Mori and van Zijl,
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Figure 2.2 – a) Two brain regions: white matter (red) and CSF (green). b) The diffusion in
the WM (corpus callosum; red spot) is anisotropic occurring along the axonal fibers whereas,
the diffusion in the ventricular CSF (green spot) is unrestricted and thus, isotropic c). The
diffusion tensor ellipsoids that model the anisotropic and isotropic diffusions are shown in b)
and c), respectively. Each tensor is characterized by three eigenvectors with corresponding
eigenvalues ∏1, ∏3 and ∏3, and in the case of anisotropic diffusion the long axis of the ellipsoid
is aligned with the white matter tract. d) and e) show the tractography results of the cortico-
spinal tract using a deterministic and probabilistic algorithm, respectively. Figures adapted
with permission from Pandit et al. (2013).

2005). The isotropic diffusion is modeled by a 3-dimensional sphere whereas, the anisotropic
diffusion is modeled by a three-dimensional ellipsoid where the long axis of the ellipsoid is
aligned with the white matter tract (Figure 2.2 c & b).

The main two tractography algorithms are the deterministic and probabilistic techniques (see
Figure 2.2 d & e). Deterministic algorithms are based on the propagation of the WM tracts
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from seed regions along with the principal orientation of the ellipsoid in a voxel by voxel
manner until a criterion is met (Conturo et al., 1999). This family of algorithms provides high
accuracy in terms of WM streamline reconstruction however, it is very limited when WM fiber
tracts are crossing in some brain regions. To overcome this important limitation, probabilistic
tractography algorithms have been introduced that take into account the intra-voxel crossing
of WM tracts and estimate the probability that a WM fiber will cross through any other voxel
in the brain (Behrens et al., 2007; Pandit et al., 2013).

Finally, DTI provides a plethora of metrics about the microstructure of the brain such as
the mean diffusivity (i.e., a measure of the displacement of water molecules), the apparent
diffusion coefficient (i.e., a measure of tissue water diffusivity), and the fractional anisotropy
(i.e., a measure of the degree of anisotropy of the fibers) (Curran et al., 2016). Brain maps based
on these metrics can be constructed and explored to better characterize and understand the
underlying brain structural connectivity.

2.1.2 Functional connectivity

Advances in magnetic resonance imaging (MRI) have not only allowed us to acquire brain
scans that reflect anatomical and microstructural properties of the brain (as described in
the previous section 2.1) but also brain scans that reflect brain function across time. To this
end, a sequence of brain volumes is acquired by repeating the steps described in Section
(2.1) at a fixed time interval and using a different acquisition protocol. The time interval
corresponds to the difference in the acquisition time of two consecutive brain scans and it is
known as Repetition Time (TR). Moreover, for the acquisition of the sequence of brain scans,
echo-planar imaging (EPI) (Mansfield, 1984) is commonly used and the TR is usually set to 2
or 3s (but can fall to ms scale). This technique is known as functional Magnetic Resonance
Imaging (fMRI).

fMRI can be used to either study intrinsic brain activity, in the absence of external stimuli
(resting-state fMRI, see section 2.2.2), or brain response (i.e., activation/deactivation) to
external stimuli (task-based fMRI, see section 2.2.1). Since its introduction in 1990, fMRI
has provided valuable insights in cognitive and clinical neuroscience allowing us to better
characterize and understand brain function.

Principles of fMRI

Functional magnetic resonance imaging (fMRI) is a non-invasive, neuroimaging technique
that is able to measure indirect neural activity by detecting blood flow-related changes in
the brain. fMRI relies on the coupling between cerebral blood flow and neuronal activation,
in the sense that when a brain region is active, the blood flow in this region increases. In
more detail, when neurons are active they consume oxygenated hemoglobin (Gore, 2003). To
compensate for this oxygen consumption, an inflow of oxygenated hemoglobin is delivered to
the active brain region, via the blood. This phenomenon is known as ‘neurovascular coupling’.
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As a result, a regional imbalance occurs where the concentration of oxyhemoglobin (oxy-
Hb) is higher compared to this of deoxyhemoglobin (deoxy-Hb) (see Figure 2.3a). Oxy-Hb is
diamagnetic whereas deoxy-Hb is paramagnetic leading to the suppression of the MR signal
(Gore, 2003). Thus, this imbalance reduces the net “susceptibility effect” of deoxy-Hb which
significantly affects the T2- and T2*-weighted images (Fink, 2007). Increased neuronal activity
is represented (with a time delay) by an increase in the BOLD signal. The size of the BOLD
effect varies between approximately 1% and 3% (Huettel, 2010; Gore, 2003).

Figure 2.3 – a) A visual representation of the principles underlying the BOLD signal in fMRI.
Deoxy-Hb is paramagnetic inducing inhomogeneities in the magnetic field. The BOLD signal
from active brain regions increases as newly oxy-Hb is delivered via the blood and due to
the imbalance in the concentration of oxy-Hb and deoxy-Hb. b) The canonical HRF. Figures
adapted with permission from Gore (2003) and Rangaprakash et al. (2018), respectively.

As discussed previously, the acquired BOLD signal is an indirect measure of the underlying
neural activity. Every neural activation is followed by a hemodynamic response. This is
typically referred to as the hemodynamic response function (HRF) and it is modeled as a
combination of two gamma functions. Following the neural activity, the peak of the HRF
occurs, on average, after a 5s time lag (Logothetis et al., 2001; Friston et al., 1998). Briefly,
the neurovascular coupling evolves as follows. Some seconds upon neural activity (t=0) the
measured signal starts to increase and the peak appears around five seconds (t=5-6s). Next,
the BOLD signal decreases below the baseline (post-stimulus undershoot) and finally it returns
to the initial baseline (t=20s) (see Figure 2.3 b). The post-stimulus undershoot is observed
since blood flow decreases more rapidly than blood volume allowing a higher concentration of
deoxy-Hb (Friston et al., 1998). Moreover, it is worth pointing out that the accurate modeling
of the HRF can massively affect the fMRI data analysis and that variability in the HRF across
different populations (e.g. adults vs neonates, see Arichi et al. (2012)) exists and needs to be
considered.

Finally, fMRI enables us to explore and study brain function, by acquiring multiple functional
brain scans and then tracking across time the measured activity of the underlying brain regions,
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resulting in brain activity time-series (after first applying some pre-processing steps such
as realignment, co-registration, normalization and spatial smoothing of the brain volumes).
Methods and experimental designs for the analysis of functional connectivity are described in
the next sections (see section 2.2).

2.1.3 Brain tissue volumes

In the previous sections, the acquisition procedure of functional and structural brain images
was described. Functional MRI allows us to study brain function while DWI enables the
exploration of microstructural properties of the brain. To study anatomical features of the
brain such as tissue volumes, anatomical images (as described in section 2.1) can be used.

Advances in the MRI processing tools have allowed the extraction and quantification of tissue
brain volumes from anatomical MRI images. This has prompted research into the possible
contribution of such information to better understand and characterize possible brain damage
as well as brain anatomical abnormalities (discussed in the next sections). Brain volumetric
segmentation algorithms aim to segment a 3D anatomical image of the brain into different
tissue types. These typically include the grey matter, white matter, CSF, as well as subcortical
regions, such as amygdala, thalamus, putamen, caudate, etc. An example of brain tissue
segmentation is presented in Figure 2.4.

The analysis of brain volumetric data using magnetic resonance imaging (MRI) has provided
valuable insights into pathology and it is considered a valuable neuroimaging tool to support
diagnosis and evaluate neurodegenerative disease progression (Maclaren et al., 2014).

Figure 2.4 – The automatic segmentation of a T1-weighted scan. Different colors correspond
to different brain tissue types. Figure adapted with permission from Puonti et al. (2016).

2.2 Data analysis tools

In this section, the state-of-the-art methodological tools and frameworks for the analysis of
the different brain neuroimaging modalities are presented.
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2.2.1 Task-based fMRI for brain function

To study the functional activity of the brain during externally-induced stimuli, the task-based
fMRI (t-fMRI) experimental design has been widely used in most t-fMRI studies. As opposed to
the task-free resting-state fMRI (see section 2.2.2), t-fMRI studies aim to explore how the brain
responds to external stimuli that are presented during acquisition. The presentation of the
stimuli is usually performed in a block design where the different stimuli (tasks or conditions
on time) are grouped into extended time intervals forming what we call ‘blocks’. Blocks of
stimuli (e.g., visual or auditory stimuli) are usually followed by blocks of rest (e.g., fixation
cross on a black screen) and this pattern is repeated several times to form the experimental
time horizon. Finally, the main advantage of the block design is the high statistical power
for brain activity localization and robustness to different shapes of HRFs, as opposed to the
event-based designs (Lindquist, 2008). In this dissertation, block design was used for the
t-fMRI studies.

The most common approach to analyze fMRI data and to localize task-dependent brain
activity is the General Linear Model (GLM). GLM is a confirmatory method aiming to separate
stimulus-induced signals from noise. It models the observed BOLD time-series as a linear
combination of different components that contribute to the signal (known as regressors)
and tests (hypothesis testing) whether brain activity is related to the know input functions
(conditions or tasks) that represent/model neural response. GLM is very flexible allowing
the inclusion of several regressors in the design matrix such as motion parameters or clinical
data (e.g., age, IQ) allowing this way the modeling of confound factors. Hypothesis testing of
the GLM model’s estimates (beta estimates) reflects how well the model fits the experimental
observation (BOLD signals) (Friston et al., 1995a; Friston, 2005; Monti, 2011). The model’s
estimates represent the magnitude of the effect of the corresponding regressor. To reveal
brain activity differences between tasks, a comparison (known as contrast) of the task-specific
responses is usually performed (e.g., task music - task silence). The results of the GLM analysis
are typically reported in the form of statistical parametric maps (SPMs) that show the brain
response differences between the task responses (Lindquist, 2008).

Formally, the theoretical GLM model for a single voxel time-course sampled T times is defined
as y = XØ+", where y is an T £1 column vector representing the measured BOLD signal time-
series of a single voxel, X is the T £p design matrix with each column representing a different
regressor (i.e., predictor variable), and " is the error term. The design matrix (X) models all
available knowledge about experimentally controlled factors and potential confounds such as
motion parameters or clinical data (Friston et al., 1995b). To solve for beta, the ordinary least-
squares estimator (OLS) is a minimum variance linear unbiased estimate (MVUE) of Ø under
the assumption that the noise (") is normally distributed as N

°
0,æ2I

¢
. The unknown model

parameter (betas) and the variance are estimated as Ø̂=
°
XTX

¢°1 XTy and var(Ø̂) =æ2 °
XTX
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(Monti, 2011; Pernet, 2014). The t °value, for a specific contrast of interest (c), is estimated as

t = (c T Ø̂)/æ̂
q

c T
°

X T X
¢°1 c , where bæ2 = (êT ê)/(T ° rank(X)) is the variance estimate and the

t ° value follows the student t-distribution with T °p degrees of freedom.
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GLM is powerful but has three main disadvantages. First, it is strongly model-based and
thus extremely sensitive to the design matrix construction and setup. Second, GLM is a
confirmatory, hypothesis-driven approach based on mass-univariate testing (50-100k voxels)
and false-positives need to be controlled. Third, the GLM ignores voxel interactions and
assumes independent responses among voxels which might not always hold.

Several extensions of the GLM have been proposed, with one being the Psychophysiological
Interaction (PPI) confirmatory analysis that has been employed in the context of the present
dissertation (Friston et al., 1997). PPI estimates context-specific changes in coupling (known
as effective connectivity) between a seed region and the rest of the brain. In more detail, PPI can
capture interactions between brain voxels that enhance their relationship with a predefined
seed region in a particular ‘context’ such as during the execution of a high cognitive demand
task. The main principle underlying PPI is that the BOLD activity of two interacting brain
regions will correlate over time suggesting that the activity in one region may be driven by the
activity of the other. To capture this context-specific association, the task time-course, the
seed time-course, and the PPI interaction term (i.e., the element by element product of the
seed activity with the task time-course), can be included as regressors in the design matrix (X)
in a standard GLM analysis as previously described. Thus, voxels that were correlated with the
seed during the task blocks will be captured by the PPI regressor (McLaren et al., 2012; O’Reilly
et al., 2012). Finally, one important thing to mention is that PPI cannot infer the direction of
causality, as opposed to other causal models such as the dynamic causal modeling (DCM) that
assumes that the brain is a deterministic nonlinear dynamic system that is subject to inputs
producing outputs (Friston et al., 2003).

Brain activity is characterized by spatio-temporal dependencies that cannot be accurately
modeled a priori (Bowman, 2005). This fact prevents their evaluation by confirmatory methods
such as the GLM, PPI, or DCM. To address this limitation, several data-driven or exploratory
methods for the analysis of fMRI data exist. These are usually multivariate and model-free
methods that are capable of revealing the underlying structure in the data. Some of the most
widely used exploratory models for t-fMRI analysis include the principal component analysis
(PCA) (Zhong et al., 2009) and clustering methods (Aljobouri et al., 2018; Venkataraman et al.,
2009). PCA is usually used to reduce the high dimensionality of the t-fMRI data (100k voxels),
before further analysis, by decomposing and projecting the data into a reduced space where
the variance is maximized. Finally, clustering analysis can be used to detect brain active
regions by grouping brain scans, forming clusters of activity (known as co-activation patterns)
usually based on a similarity or distance metric, without the need for strict assumptions.

2.2.2 Resting-state functional connectivity

Resting-state fMRI (rs-fMRI) refers to the acquisition of fMRI data in the absence of exter-
nal stimuli (task-free paradigm). During the rs-fMRI acquisition, participants are usually
instructed to mind wander with their eyes closed. The main difference between t-fMRI and
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rs-fMRI is that in the case of rs-fMRI there is no explicit demand for cognitive, motor, or
perceptual tasks. The origin of rs-fMRI dates back to 1995 when Barat Biswal and colleagues
reported that fluctuations in BOLD rs-fMRI signals of the motor cortex revealed spatial cor-
relation patterns of neuronal origin (Biswal et al., 1995). These patterns were observed in
the absence of any explicit motor task. Based upon these observations, similar findings for
the auditory, visual cortex, and default mode network (DMN) have been reported (Hampson
et al., 2004; Greicius et al., 2002). Thus, when accounting for confounding effects (e.g., head
motion (Power et al., 2018), respiratory and cardiac rate (Yoshikawa et al., 2020) etc.), these
low-frequency fluctuations in rs-fMRI reflect neuronal-originated aspects of the brain func-
tional organization. For a review of the historical context of these rs-fMRI studies refer to Lowe
(2010).

The main advantages of rs-fMRI include, first of all, the simplicity of the experimental design
and the short acquisition time needed (usually around 15 min but even 5 to 7 min provide
enough statistical power and reliability, Dijk et al. (2010)) make it an ideal way to study brain
function at rest. Second, rs-fMRI allows the acquisition of data for participants that are
incapable to perform fMRI tasks such as sedated, paralyzed, cognitively impaired patients as
well as neonates and preterm infants (O'Connor and Zeffiro, 2019). Third, rs-fMRI can also be
used to accurately detect individual differences (functional fingerprinting, (Finn et al., 2015))
as well as brain function alterations.

The spontaneous fluctuations of brain activity during rest have been shown to be organized
in terms of consistent large-scale functional networks across healthy subjects (Damoiseaux
et al., 2006). To explore these functional networks, graph and network-based frameworks
have been widely used. These networks are also known as ‘connectomes’, a representation
of the brain wiring, which holds important information related to brain organization and
functioning (Sporns et al., 2005; Fornito et al., 2015). Moreover, disease propagation patterns
are constrained by the highly organized topology of the underlying neural architecture i.e.,
the connectome and therefore, a connectomics approach can be essential to understand
neuropathology (Fornito et al., 2015). Each vertex (node) in these networks represents a brain
region while each edge (weight) reflects the interdependence of two nodes. In the case of rs-
fMRI data, the edge weights between brain regions are defined as the functional connectivity
that is often measured as the Pearson correlation between the regionally averaged voxel time-
courses (Sporns, 2011; Bullmore and Sporns, 2009). This network representation is known as
‘functional connectome’. However, alternative functional connectivity measures have been
recently introduced, such as accordance and discordance measures that are based on the
activation-deactivation modeling of the brain activity (Meskaldji et al., 2015a,b). In the case of
diffusion-weighted imaging data, the edge weights between brain regions are usually defined
as the number of streamlines that connect the brain regions. The streamlines are estimated
using tractography algorithms (as discussed in section 2.1.1). This is known as ‘structural
connectome’.

Network-based measures can be used to characterize several aspects of global and local

21



Chapter 2. Background

brain connectivity that reflect functional integration and segregation, as well as quantify the
importance of individual brain nodes (Rubinov and Sporns, 2010). A widely used measure
of segregation is the network’s clustering coefficient (C = (1/N )Ci , N : number of nodes).
For an undirected, weighted graph, the clustering coefficient of node i is defined as Ci =
ei /(ki (ki °1)/2), where ei is the sum of weight edges in neighborhood of node i and ki is its
strength (Watts and Strogatz, 1998). The C measure reflects the fraction of triangles around
an individual node (Rubinov and Sporns, 2010). On the other hand, the most commonly
used measures of network integration is the characteristic path length of the network i.e.,
the average shortest path length between all pairs of nodes, defined as L = (1/n)

P
i2N Li =

(1/n)
P

i2N

P
j2N , j 6=i di j

n°1 , where Li is the average distance between node i and all other connected
nodes (Watts and Strogatz, 1998). Finally, the importance of an individual brain node can
be measured by the strength of the node defined as ki =

PN
j=1 ai , j , where A is the adjacency

matrix. The investigation of brain connectomes has revealed interesting and important
network-related characteristics such as small-world (high clustering coefficient and short
path length) (Bassett and Bullmore, 2016), rich-hub (van den Heuvel and Sporns, 2011),
scale-free (power-law degree distribution) (Eguíluz et al., 2005) and modular (community
structure) (Kabbara et al., 2019; Betzel et al., 2017; Zhigalov et al., 2017; Sporns and Betzel,
2016) underlying organization. The latter has allowed the natural, data-driven grouping of
brain regions, exploiting the modular nature of the brain (Sporns and Betzel, 2016; Akiki
and Abdallah, 2019; Diez et al., 2015). However, one major limitation of most connectomics
analyses is the fact that the full dimensionality of the data is not exploited. Instead, the brain
is parcellated into brain regions based on a predefined parcellation atlas. This is done due to
the high-dimensionality nature of the data (spatial resolution) that is prohibitive as it does
not allow the explicit estimation of the connectomes at the voxel level. Thus, a network-based
analysis at the voxel level is not feasible. In this dissertation, we attempt to fill this gap by
proposing a method that enables the estimation of modularity at the voxel level enabling, for
the first time, the fine-grained modularity mapping of voxel-wise connectivity.

Alternative methods to connectomics, such as the independent component analysis (ICA), can
be used to analyze rs-fMRI data and reveal brain functional networks. ICA is a blind source
separation method that assumes statistical independence of the input sources. The term
‘blind’ refers to the fact that the method aims to recover signal source from mixtures with
unknown mixing coefficients (Brown et al., 2001; McKeown, 2003). The assumption, when
applied to rs-fMRI data, is that the measured data is a product of different neuronal sources
and therefore, by applying ICA, we can separate these input sources and recover isolated
brain networks. ICA has been able to successfully identify several reproducible resting-state
functional networks (e.g. DMN network) and broaden our knowledge on how brain networks
emerge at rest but also during task (Smith et al., 2009).

Finally, techniques that quantify the strength of the relationship between different modalities
have provided valuable insights into the neuroimaging field. One such method is the partial
least squares (PLS) analysis that maximizes the covariance between two different modalities
(McIntosh and Lobaugh, 2004). For example, using PLS we can associate fMRI-based features
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(e.g., nodal strength, brain activity, etc.) to cognitive or behavioural data (e.g., intervention
dose, IQ, age, etc.), unveiling the neural correlates of the observed cognitive or behavioural
outcome (Krishnan et al., 2011).

2.2.3 Brain volumetric data for brain abnormalities

Tissue brain volumes obtained from anatomical MRI images using segmentation algorithms
(see section 2.1.3) enable us to unveil disease-related brain anatomical abnormalities and
evaluate disease progression and its relation to adverse outcomes (Hoogman et al., 2017;
Alexander et al., 2019; Peterson, 2000; Veijola et al., 2014).

Recently the number of studies employing machine learning techniques on brain tissue
volumes, instead of traditional linear regression and correlation models, has increased. The
main advantage of machine learning models such as Support vector machines (SVMs), Linear
discriminant analysis (LDA), and others, is that the modeling of the data is performed in a
multivariate way (Ion-Margineanu, 2018) enabling the modeling of multivariate relationships
in the data. An SVM model is a supervised machine learning model that finds the best
separating hyperplane between two classes (Hearst et al., 1998). On the other hand, LDA
projects the data into a reduced space where the intra-class separation is maximized (Tharwat
et al., 2017). Thus, multivariate models can model the underlying structure of the data as
a whole, taking into account the relationship among the variables, than simply looking at
a single variable at the time. (Formisano et al., 2008; Chen et al., 2014). By investigating
the learned/fitted model functions, we can relate brain tissue abnormalities to the observed
adverse outcomes. In the context of the present thesis, both SVM and LDA models were used
aiming to investigate the relationship between brain tissue volumes and cognitive as well as
behavioural adverse neurodevelopmental outcomes in preterm infants (see section 4.1 and
4.2).

2.3 Preterm birth

Preterm birth is defined as the birth that occurs prior to 37 weeks of gestation and it constitutes
a major pediatric public health problem. Approximately 15 million babies are born preterm
every year and this number has been rising (Blencowe et al., 2013). Based on the birth
gestational age (GA), three subcategories exist: a) extremely preterm (EP; less than 28 weeks), b)
very preterm (VPT; 28 to 32 weeks) and c) moderate/late preterm (LP; 32 to 37 weeks). Preterm-
born infants (PT) have an increased risk of suffering from chronic health issues, infections,
asthma, and feeding problems. Furthermore, complications due to prematurity have been
reported to be the leading cause of death in children under 5 years of age (Liu et al., 2016). Most
importantly, preterm birth has been strongly associated with adverse neurodevelopmental
outcomes that may persist even into adulthood (Delobel-Ayoub et al., 2009; Marlow et al.,
2005; Arpino et al., 2010; Doyle and Anderson, 2010). Thus, understanding the underlying
neuronal mechanisms of preterm birth may allow more targeted and individualized early
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therapeutic interventions aiming to prevent the observed adverse outcomes.

In this section, an overview of the poor neurodevelopmental outcomes linked to preterm
birth is first provided. Next, the functional and structural brain alterations underpinning
preterm birth are presented followed by a summary of the early interventions that are usually
administrated to preterm populations. This dissertation aims to provide novel knowledge
about the effect of early musical interventions on brain function in preterm infants as well as to
investigate the association of brain tissue volumes and clinical data with neurodevelopmental
outcomes later in life.

2.3.1 Preterm birth and adverse outcome

Recent advances in the neonatal intensive care units (NICU) have increased the survival rates
of preterm infants (Arpino et al., 2010). However, the incidence of preterm birth is rising
worldwide and remains strongly associated with persistent long-term neurodevelopmental
disabilities such as cognitive, motor, and behavioural adverse outcomes (Delobel-Ayoub et al.,
2009; Marlow et al., 2005; Arpino et al., 2010; Doyle and Anderson, 2010). Cognitive problems
include thinking and learning disabilities while motor development problems refer mainly to
crawling and walking problems and finally, behavioural deficits include attention deficits and
poor social skills. Importantly, these adverse outcomes may persist into school age and even
adulthood (Soleimani et al., 2014). Additionally, it has been reported that only 61% of infants
born at 24–32 weeks of gestational age were free of disabilities at 5 years of age (Larroque et al.,
2008) and that preterm infants have three times odds of developing a psychiatric disorder,
compared to full-term born infants (Treyvaud et al., 2013; Chung et al., 2020).

Early identification of infants at high risk of neurodevelopmental impairments can thus be ex-
tremely valuable since it would allow better decision making about appropriate early interven-
tion aiming to prevent these adverse neurodevelopmental consequences through resilience
(Sutton and Darmstadt, 2013; Silveira et al., 2018; Spittle and Treyvaud, 2016; Puthussery et al.,
2018).

2.3.2 Preterm birth and brain alterations

The impact of preterm birth on the brain can be heterogeneous, ranging from specific focal
injuries to a more general alteration of cerebral development resulting in the disruption of the
typical child’s development and finally leading to functional consequences.

While the main mechanisms and processes underlying preterm birth have not yet been
fully understood, magnetic resonance imaging (MRI) has provided valuable insights and
has played a central role in studying the preterm developing brain and identifying relevant
neuroimaging biomarkers. Using this non-invasive imaging technique, a plethora of studies
has focused on the understanding of the consequences of prematurity on brain structure. In
more detail, it has been shown that preterm-born children have smaller cortical grey matter,
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cortical white matter, basal ganglia, amygdala, hippocampus, and cerebellum brain volumes
compared to control children born at term (Lodygensky et al., 2008; Cismaru et al., 2016;
Inder, 2005; Hüppi et al., 1998; Counsell and Boardman, 2005). Additionally, reduced volumes
in brain areas involved in high executive functions such as sensorimotor, parieto-occipital,
and fronto-temporal regions have been reported by several studies (Peterson et al., 2003;
Gimenez et al., 2006). Moreover, the reduction of white matter, cerebellum and basal ganglia
volumes has been linked to poor neurodevelopmental outcome (Ment et al., 2009; Padilla
et al., 2014) whereas cortical grey matter (CGM) volume was found to be negatively correlated
with motor and cognitive outcome at 2 years old, reflecting potential neuronal migration
disturbance at the UWM-CGM boundary (Keunen et al., 2016). Neonatal brain abnormalities
in the white matter, cerebellar, cortical, and deep grey matter have been linked to psychiatric
and socio-emotional disorders in school-aged preterm-born children (Treyvaud et al., 2013).
Finally, lower hippocampal volume was associated with a higher prevalence of hyperactivity,
inattention, and socio-emotional problems in VPT school-aged children while reduced volume
in frontal regions was associated with poorer prosocial skills (Rogers et al., 2012).

Resting-state functional connectivity studies have also revealed alterations in functional
connectivity related to preterm birth. Ball and colleagues identified alterations to a complex
set of interactions between functional nodes in subcortical and cortical grey matter. The
most dominant sets of altered connections were found between basal ganglia and frontal
cortex confirming that functional connectivity in the preterm brain is significantly altered by
term-equivalent age in higher-level association regions (Ball et al., 2016). Moreover, Lordier
and colleagues reported decreased resting-state functional connectivity in preterm infants
between the salience network with the superior frontal, auditory, and sensorimotor regions,
and the salience network with the thalamus and precuneus regions, compared to full-terms
(Lordier et al., 2019). Furthermore, Papini and colleagues reported alterations in resting-state
functional connectivity between the amygdala, parietal and temporal cortices that could be
linked to the deficits in emotion processing observed in preterm-born children (Papini et al.,
2016). Functional connectivity alterations of the sensorimotor and higher cognitive networks
have been shown to be the most affected in VPT-born children and were associated with
poorer executive functions (Wehrle et al., 2018). Moreover, motor deficits have been linked
to altered functional connectivity in the thalamus-motor, basal ganglia-motor, and dorsal
attention-default mode network in VPT-born children (Wheelock et al., 2018). Finally, altered
resting-state functional connectivity in emotion processing brain regions was reported in a
cohort of VPT-born adults (Papini et al., 2016).

Taking all these into account, we can highlight the vulnerability of the brain following preterm
birth and the importance of developing better clinical tools for the early prediction of long-
term neurodevelopmental outcomes in preterm infants. This would enable the early iden-
tification of infants at risk and the development of more focused interventions. However,
this is a challenging task due to the complexity of the developing infant brain and to po-
tential other factors (such as the socioeconomic status of the parents, SES) that influence
neurodevelopment (Christensen et al., 2014; ElHassan et al., 2018).
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Moreover, there is conflicting evidence concerning the predictive utility of brain volumes
acquired early in life (e.g., at birth or TEA). A number of studies have verified the predictive
utility of the brain volumetric data (as described above, for a review see Anderson et al. (2015)),
whereas others not (Morsing et al., 2018). A clear consensus about the predictive utility of
neuroimaging brain data for the prediction of long-term neurodevelopmental outcome has
yet to be established (Keunen et al., 2012; Anderson et al., 2015). Thus, more studies aiming to
investigate the predictive power of volumetric and clinical as well as perinatal data are needed.
This thesis aims to provide more evidence on this dispute.

Finally, although functional, structural, and volumetric brain alterations due to prematurity
have been previously extensively studied (Dewey et al., 2019; Karolis et al., 2017; Alexander
et al., 2019; Gui et al., 2019; de Almeida et al., 2021; Inder, 2005), the exact sequence of
brain abnormality underlying preterm birth has never been investigated. Understanding the
sequence of biological events along the course of prematurity provides valuable insights into
the underlying pathophysiology and can help intervention development. The present thesis
aims to fill this gap in knowledge by attempting to unveil the sequence of abnormality of
prematurity.

2.3.3 Early interventions

Preterm infants spend the first weeks of their life in the neonatal intensive care unit (NICU).
NICU provides a special environment designed to support life and assure the survival of
these infants. During their hospitalization, preterm infants undergo interventions aiming
to boost brain maturation and development. These early developmental interventions have
been traditionally provided in the clinical setting usually during hospitalization but also
post-hospital discharge focusing on the improvement of neurodevelopmental outcomes.

Spittle et al., recently explored the effectiveness of early developmental interventions pro-
vided either during the primary hospitalization or post-hospital discharge on the motor and
cognitive development, concluding that early interventions have a significant impact on cog-
nitive development up to preschool age (Spittle et al., 2015). In another study, researchers
reported that developmental care interventions during hospitalization in the NICU improved
short-term growth, feeding outcomes, decreased respiratory support, decreased length of
hospitalization as well as improved neurodevelopmental outcomes at 2 years old age (Syming-
ton and Pinelli, 2006). Finally, several authors have reported stabilizing effects on heart and
respiratory rates, reduction of apnea or bradycardia, improved feeding, better weight gain,
and more mature sleep patterns (Filippa et al., 2017; Anderson and Patel, 2018; Pineda et al.,
2017; Haslbeck, 2012; Filippa et al., 2015).

Interestingly, new promising ways to enrich NICU’s environment have been recently intro-
duced such as music therapy among other sensory stimuli (Allen, 2014; van der Heijden
et al., 2016). However, there is a gap in our knowledge about the basic music processing in
the brain of preterm infants. Cortical processing of the music, as well as the effect of the
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musical intervention of the brain functional connectivity, is an important question to address
before supporting the enrichment of the neonatal environment with music. This highlights
the importance of this dissertation to fill this gap.

2.4 Challenges in neonatal neuroimaging research

MRI has provided valuable insights into the brain development and abnormality character-
izing preterm birth. Due to its non-invasive nature and sensitivity to detect and quantify
brain damage, MRI is the preferred imaging modality for neonatal populations. Thanks to
MRI, new findings of the brain structural and functional connectivity as well as morphology
and microstructural architecture of the neonatal brain have been reported. Additionally, the
association of these brain alterations with neurodevelopmental outcome has played a central
role in the development of early interventions aiming to avoid long-term disabilities (Dubois
et al., 2020). However, some methodological aspects need to be cautiously considered when
performing MRI neuroimaging studies in neonatal populations.

First of all, the acquisition of fMRI or rs-fMRI data requires the subjects to lay still on a motor-
ized table that is moved into the interior of the MRI scanner. Depending on the experimental
design and task paradigm, the duration of the MRI scan can vary between 10 and 40 minutes
(Murphy et al., 2007). An important difference between MRI studies in adults compared to
neonatal populations is that infants cannot be sedated for research purposes, but only for
clinical indications. Additionally, it is impossible to explicitly instruct the infants to stay still.
This can be a major problem given that MRI images are very susceptible to head motion (for an
example see Figure 2.5 b). To reduce this artefact, neonates usually receive breast or formula
feeding before the MRI acquisition. Next, they are swaddled in a blanket, placed in a vacuum
pillow for immobilization, and finally scanned while resting quietly in the scanner. Moreover,
MR-compatible headphones are used for noise protection. To deal with motion-corrupted
brain scans, motion scrubbing has been an acceptable solution (Power et al., 2018, 2014) for
this hard-to-image population (Dubois et al., 2020; Cusack et al., 2018) however, it is worth
mentioning that often the percentage of motion-corrupted scans is large enough and thus,
the subject needs to be discarded. This eventually leads to reduced sample sizes and less
statistical power, a common characteristic of most neonatal neuroimaging studies.

Another important consideration is the hemodynamic response. fMRI measures indirect neu-
ral activity via the blood-oxygen-level-dependent (BOLD) response (as described previously
in section 2.1.2). The measured BOLD signal is considered to be the result of the convolution
of neural response with the HRF (the temporal model of the hemodynamic response). In
adults, the peak of the (canonical) HRF occurs around 5-6s following the neural response
(t=0s, see Figure 2.3). On the other hand, the brain develops dramatically in the third trimester
of pregnancy (see Figure 2.5 a for an illustration) and it has been shown that the neonatal
HRF differs from this of adults in terms of temporal characteristics (Arichi et al., 2012). Thus,
the accurate modeling of fMRI data requires the precise definition of the HRF since this can
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massively affect the fMRI results and their interpretation however, a consensus on the exact
form of the HRF in neonates has yet to be established.

Figure 2.5 – a) Cortical surface changes from pregnancy to adulthood. b) Common motion
artifacts on neonatal MRI images. Figures adapted with permission from Dubois et al. (2020).

Moreover, another important consideration that needs to be taken into account is the use of
an appropriate template or atlas. Most of the state-of-the-art brain atlases and templates have
been developed for adult populations (Glasser et al., 2016; Yeo et al., 2011; Brodmann, 1994;
Eickhoff et al., 2018). For adult fMRI studies, the gold standard stereotaxic space is considered
to be the Montreal Neuroimaging Institute (MNI) space that allows the normalization of
multiple subjects into the same space, enabling the direct comparison of brain features across
different subjects. On the other hand, the neonatal brain is much smaller than an adult-sized
brain and thus, normalization algorithms using MNI templates fail to provide acceptable
results. In the context of this thesis, the fMRI analysis of the preterm and full-term populations
was performed using a custom-made group-specific template allowing the normalization of
the infants into a common ‘neonatal’ space. Furthermore, for the connectome-based studies
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included in this thesis, the UNC neonatal brain atlas was used to construct the neonatal
functional connectomes (Shi et al., 2011). Finally, it should be noted that different parcellation
schemes can impact notably the brain network structure and connectomics-based statistics,
and thus affect the analyses and results (Bellec et al., 2015; Wang et al., 2009; de Reus and
van den Heuvel, 2013) however, at the same time, there is no consensus on this potent issue.
The present dissertation aims to provide new tools enabling the spectral graph theory analysis
at the voxel level. The proposed framework could be also used to create data-driven, functional
atlases providing a potential solution to the aforementioned problem.
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3 Unveiling the effects of intervention
in preterm infants with task-based
and resting-state fMRI
Preterm birth is often characterized by the presence of subtle alterations of cerebral structures,
leading to the potential disruption of the infant’s brain development. Additionally, preterm
birth has been associated with persistent long-term neurodevelopmental disabilities such as
cognitive, motor, and behavioural problems (Delobel-Ayoub et al., 2009; Doyle and Anderson,
2010). To support life, preterm infants spent their first weeks of life in the neonatal intensive
care unit. During their hospitalization, early developmental interventions are administrated
aiming to restore development and prevent adverse outcomes. Recently, musical interventions
have been introduced in the clinical setting but little is known about their effectiveness and
how the preterm brain processes this type of stimulus. To the best of our knowledge, at the
time of publication, no previous study has investigated the effect of musical intervention on
brain functional connectivity and how music affects brain functional connectivity in preterm
infants using fMRI.

The first article included in this chapter has been published in the peer-reviewed NeuroIm-
age journal. Its goal is to investigate the neural processes underlying music processing in
preterm infants as well as the effect of music exposure during hospitalization on brain func-
tional connectivity. Lara Lordier and Serafeim Loukas are joint first-authors for the paper
having contributed equally to the writing and editing of the article. Lara Lordier acquired
the neuroimaging data and Serafeim Loukas performed all formal analysis including the
pre-processing, statistical analysis, and visualization of the results. Andreas Vollenweider com-
posed the music used for the intervention. The remaining authors participated in different
stages including conceptualization, supervision, review and/or funding acquisition.

The second article has been submitted to Human Brain Mapping peer-reviewed journal. In this
study, we explore the resting-state brain connectivity changes following the presentation of the
same music used for the intervention, unveiling the beneficial effects of the early interventions.
The authors’ contribution statement is the same as in the previous article.
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resting-state fMRI

3.1 Journal Article: Music processing in preterm and full-term new-
borns: A psychophysiological interaction (PPI) approach in neona-
tal fMRI

(This article has been published in NeuroImage, DOI: 10.1016/j.neuroimage.2018.03.078)

Lara Lordiera,b,*, Serafeim Loukasa,c,*, Frédéric Grouillerd, Andreas Vollenweider a, Lana
Vasunga, Djalel-Eddine Meskaldjia,e, Fleur Lejeunef, Marie Pascale Pitteta, Cristina Borradori-
Tolsaa, François Lazeyrasg, Didier Grandjeanb,d, Dimitri Van De Villec,g, and Petra S. Hüppia

a Division of Development and Growth, Department of Pediatrics, University Hospital of
Geneva, Geneva, Switzerland
b Neuroscience of Emotion and Affective Dynamics Lab, Department of psychology and edu-
cational sciences, University of Geneva, Switzerland
c Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzer-
land
d Swiss Center for Affective Neurosciences, University of Geneva, Geneva, Switzerland
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f Child Clinical Neuropsychology Unit, FPSE, University of Geneva, Switzerland
g Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzer-
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* These authors contributed equally and are considered joint-first authors.

Abstract

Neonatal Intensive Care Units (NICU) provide special equipment designed to give life sup-
port for the increasing number of prematurely born infants and assure their survival. More
recently NICU’s strive to include developmentally oriented care and modulate sensory input
for preterm infants. Music, among other sensory stimuli, has been introduced into NICUs,
but without knowledge on the basic music processing in the brain of preterm infants. In this
study, we explored the cortico-subcortical music processing of different types of conditions
(Original music, Tempo modification, Key transposition) in newborns shortly after birth to
assess the effective connectivity of the primary auditory cortex with the entire newborn brain.
Additionally, we investigated if early exposure during NICU stay modulates brain processing
of music in preterm infants at term equivalent age. We approached these two questions using
Psychophysiological Interaction (PPI) analyses. A group of preterm infants listened to music
(Original music) starting from 33 weeks postconceptional age until term equivalent age and
were compared to two additional groups without music intervention; preterm infants and
full-term newborns. Auditory cortex functional connectivity with cerebral regions known to
be implicated in tempo and familiarity processing were identified only for preterm infants
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with music training in the NICU. Increased connectivity between auditory cortices and tha-
lamus and dorsal striatum may not only reflect their sensitivity to the known music and the
processing of its tempo as familiar, but these results are also compatible with the hypothesis
that the previously listened music induces a more arousing and pleasant state. Our results
suggest that music exposure in NICU’s environment can induce brain functional connectivity
changes that are associated with music processing.

Keywords: Preterm newborns, Psychophysiological interaction analysis, Music intervention,
Auditory cortex, Functional connectivity, fMRI

3.1.1 Introduction

Music is the art of combining and organizing sounds to obtain a harmonious combination
of frequencies and thus, a pleasant melody, which positively influences physiological and
behavioral states (e.g. Panteleeva et al. (2017)). Music listening involves auditory, cognitive,
motor, and emotional functions across cortical and subcortical brain regions (Koelsch, 2014).
Thus, music listening, because of its beneficial effects, has been used in post-stroke rehabili-
tation and in patients with aging related neurological disorders (Johansson, 2011; Särkämö,
2017; Särkämö et al., 2014). In adult intensive care units, music listening has been shown
to have an impact on anxiety states, physiological indices, and sleep duration of critically
ill patients (Hu et al., 2015; Lee et al., 2017). Therefore, there has been an increased interest
in introducing music interventions in neonatal intensive care units (NICU). A number of
authors have considered the effects of music listening in preterm infants and many have
shown stabilizing effects on heart and respiratory rates, reduction of apnea or bradycardia,
improved resting energy expenditure, improved feeding, better weight gain and more mature
sleep patterns; and most of them report a beneficial effect on at least one of these outcomes
(Haslbeck, 2012; Filippa et al., 2017; Pineda et al., 2016; Anderson and Patel, 2018). Never-
theless, these music interventions have been proposed for enhancing neonatal intensive
care environments without knowing the preterm brains ability to process music. Perani et al.
(2010) using functional magnetic resonance imaging (fMRI) observed a differential processing
of altered (music acoustic structure alteration: dissonance; and music-syntactic structure
modification: key shift) versus consonant music in full-term newborns. Furthermore, a right
lateralized auditory cortex activity in response to consonant music was observed in these
newborns. In contrast, two other studies performed in few days old newborns, one using fMRI
(Dehaene-Lambertz et al., 2010) and one using near-infrared spectroscopy (Kotilahti et al.,
2010), showed no lateralization during music processing in newborns and mainly primary
auditory cortex activation.

The ability to process music may therefore already be present in full-term newborns either be
innate or learned by sound and tissue vibrations exposure in the womb, which may provide
experience for the fundamental temporal organization of music elements; i.e., detection of
regular patterns as is present in rhythm and meter (mothers’ heart and respiratory sounds)
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and pitch and melody (mothers’ voice) (Teie, 2016).

The ability to mirror musical tempo by rhythmic movements has been shown in infants
between 5 and 24 month of age (Zentner and Eerola, 2010). Similarly, listening to a 15% tempo
change, faster or slower than spontaneous non-nutritive sucking tempo has been found
to slow down sucking tempo in newborns and two month-old infants (Bobin-Bègue et al.,
2006). In addition, a number of authors reported an ability of two to six months old infants to
remember a tempo and perceive tempo modifications using a head-turn paradigm (Baruch
and Drake, 1997; Trehub and Hannon, 2009; Trainor et al., 2004). Thus, these early behavioral
responses speak for an ability to detect rhythm and tempo and violation of these temporal
patterns have been detected by electroencephalogram studies in two month-old infants (Otte
et al., 2013) and in newborns (Háden et al., 2015). Recently, using magnetoencephalography
in 9-month-old infants, (Zhao and Kuhl, 2016) showed that a music intervention in a social
environment for one month (12 sessions of 15 minutes) increased mismatch responses in
auditory and prefrontal cortical regions to temporal violation in music and speech. Thus, the
authors suggested that repeated music intervention might modify not only music processing
abilities, but also speech processing.

In addition to tempo and rhythm, pitch cues are key elements for music processing. Using a
head-turn preference testing Plantinga and Trainor (2005) observed no difference in 6 month-
old infants responses to a familiar music and the same melody transposed (absolute pitch
modification). This absence of preference suggested either that infants did not process the
absolute pitch of the music or that they remembered the melody, but not the absolute pitch
of it. Opposing to this, another study from (Volkova et al., 2006) using a similar behavioral
assessment showed a preference for transposed music in 7 month-old infants after 14 days of
exposure, assuming a processing of and a memory for absolute pitch. These divergent findings
between the two studies could be explained by a longer exposure in the latter or by differences
of the age of the participants.

Lastly, even exposure to music during fetal life (during the 35th 36th and 37th weeks of
gestation) was shown to reduce heart rate in the newborn when listening to the music, played
to the fetus antenatally, one month after birth. Authors suggested that this cardiac response
may be linked to memory for the melody heard during the last weeks of pregnancy (Granier-
Deferre et al., 2011). Furthermore, full-term newborns that have been exposed to a specific
melody during the last weeks of pregnancy presented larger brain event-related responses
when hearing the known music than newborns without music intervention (Partanen et al.,
2013b). Also, middle-syllable raise of pitch (relative pitch modification) within pseudo-words
of three syllables (e.g. [tatata]) elicited larger mismatch response amplitudes in newborns
with fetal exposure to these pseudo words than in newborns without fetal exposure (Partanen
et al., 2013a). Furthermore, mismatch responses for alteration of the middle-syllable duration
of the pseudo word were also observed. Thus fetal exposure to music or pseudo words seems
to induce learning for the processing of some features of words and music such as relative
pitch processing and duration of the stimuli.
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However, for preterm infants, sound exposure is different and exposure to voices, noise and
potentially music happens earlier and non-attenuated by surrounding fluid. Brain networks
implicated in processing and remembering tempo and in the processing of absolute pitch in
newborns remain to be explored, as well as the effect of music exposure during NICU stay on
this processing.

How music introduction to preterm infants contributes to cortical processing of the listened
music is an important question to ask, before promoting enrichment of the neonatal envi-
ronment by music. We hypothesize that prematurely born newborns have existing music
processing abilities that could be enhanced by enrichment of NICUs’ environment with repeti-
tive music listening. To test for this hypothesis, we have used functional MRI to observe tempo
and absolute pitch processing in full-term newborns at birth and preterm newborns with or
without early music intervention at term equivalent age (TEA) using an effective connectivity
approach; i.e., a psychophysiological interaction (PPI) analysis.

3.1.2 Methods

3.1.2.1 Participants

Preterm and full-term newborns were recruited from the University Hospital of Geneva neona-
tal units. Ethical review board approval of the study and parental informed consent was
obtained for each newborn prior to participation in the study. 35 preterm infants (GA at birth
<32 weeks) were randomized to either music intervention or control condition (without music).
The Preterm-Music group consisted of eighteen preterm newborns who were exposed to music
with closed headphones (isolating from noise) during the hospitalization in the NICU. The
Preterm-Control group consisted of seventeen preterm newborns, who had open headphones
(which do not isolate babies from noise around them) without music five times per week
during the hospitalization. At term equivalent age all preterm infants underwent magnetic
resonance imaging including a fMRI music exposure paradigm. The Full-term group consisted
of twenty-one full-term newborns scanned in the first days of life with the same fMRI music
paradigm protocol. Few infants were excluded from further analysis because of major brain
lesions or large-scale movement on MR-Imaging. Infants with no auditory cortex activation
to sound were also excluded (see 2.4 Image Processing). The final sample of infants used for
further analysis was as follow: 9 Preterm-Music (4 females/ 5males, mean GA at birth: 28.70
± 2.46 weeks, mean GA at MRI: 40.25 ± 0.51 weeks), 9 Preterm-Control (5 females/4 males,
mean GA at birth: 28.7 ± 2.01 weeks, mean GA at MRI: 40.4 ± 0.77 weeks) and 9 Full-term
infants (4 females/5males, mean GA at birth: 39.32 ± 1.03 weeks, mean GA at MRI: 39.63 ± 1.02
weeks). No significant difference between the Preterm-Music and the Preterm-Control groups
was found in demographic and perinatal variables: gestational age at birth; weight, height
and head circumference at birth; gender; neonatal asphyxia; bronco-pulmonary dysplasia;
intraventricular hemorrhages grade 1 and 2; sepsis (positive blood culture); mean number
of music/no-music intervention; gestational age at MRI and socio-economic parental status
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(Largo et al., 1989) (see Table A.1 in Appendix A).

3.1.2.2 Music intervention

Infants were randomly assigned to either the Preterm-Music or the Preterm-Control group.
Parents, music intervention providers and caregivers were blind to group assignment.

The Music group listened to 8 minutes of a music especially created by Andreas Vollenweider
(http://vollenweider.com/en), composed of a background, bells, harp and punji (charming
snake flute), five times per weeks, from 33 weeks gestational age until TEA. This music was
chosen based on behavioral and physiological responses of preterm newborns to the instru-
ments (for more details see Table A.2 in Appendix A). The music was either presented on B (4
infants) or Eb key (5 infants).

Preterm-Control group followed the exact same protocol but had headphones placed without
music. Preterm-Music infants listened to music about 5 times per week (mean: 4.96 ± 1.54)
and Preterm-Control infants had the headphones put on without music at the same frequency
(mean: 4.91 ± 2.60).

3.1.2.3 MRI acquisition

All infants received breast or formula feeding before the MRI and were swaddled in a blanket
and set up in a vacuum pillow for immobilization. No sedation was used; infants were scanned
while resting quietly in the scanner or sleeping. Infants were monitored (heart rate and oxygen
saturation) during imaging. To protect infants from the noise of the scanner and to deliver the
music, MR-compatible headphones were used (MR confon, Magdeburg, Germany).

A Siemens 3T scanner (Siemens Trio: 11 out of 18 Preterm-Music, 9/17 Preterm-Control, 15/21
Full-term infants and Siemens Prisma) was used to acquire T2*-weighted gradient-echo EPI
images (260 images, TR= 1600 ms, TE= 30 ms, 30 slices, voxel size= 2.5x2.5x3.0 mm3, flip angle
= 90°, Matrix size 64x52) as well as T2-weighted structural image for anatomical reference
(113 coronal slices, TR= 4990ms, TE=151ms, flip angle=150°, Matrix size=256x164; voxel size
=0.78x0.78x1.2 mm3).

During the EPI sequence, music stimuli were presented in a pseudo-random block design
protocol of 5 conditions: Silence, Original music, Tempo music, Transposed music and Back-
ground music. Each block lasted 8 seconds and each condition was repeated ten times.
Original music stimuli consisted of 10 different extracts, lasting 8 seconds, of the music heard
during NICU stay (known music). All contained background music as well as at least one of
the instruments (bells, harp and/or punji) and all instruments were represented in the 10
extracts. Tempo music stimuli were composed of these same extracts played 40% faster, and
transposed music were the same extracts but transposed on a different key (B/Eb).

36

http://vollenweider.com/en


3.1. Journal Article: Music processing in preterm and full-term newborns: A
psychophysiological interaction (PPI) approach in neonatal fMRI

3.1.2.4 Image Processing

Functional MRI sequences were preprocessed and analyzed using Statistical Parametric Map-
ping software SPM8 [Wellcome Department of Imaging Neuroscience, London (www.fil.ion.
ucl.ac.uk/spm/software/spm8/), including: (i) realignment; (ii) slice-timing; (iii) rigid body
coregistration with the T2 structural image; (iv) normalization of the T2 structural image
(1x1x1mm3) and the EPI (2x2x2mm3) using a newborn template (N=20 term and preterm
at TEA newborns); and (v) smoothing with a Gaussian kernel of 6-mm full-width at half-
maximum. To correct for motion, 24 motion-related parameters (the 6 realignment param-
eters and their Volterra expansion) (Friston et al., 1996) were reduced into 6 components
using Singular Value Decomposition (SVD) and included in the model as covariates to remove
any residual motion-related variance. First, infants with brain lesions were excluded. Next,
only infants with absolute motion (framewise displacement) under 1 mm for more than 180
consecutive images (70% of the total run) were used for subsequent analyses. Finally, all
subsequent analyses were performed only on infants showing activations induced by the
overall sound > silence contrast, at p<0.05 uncorrected in auditory regions. The final number
of infants per group was 9.

3.1.2.5 Data Analysis

In order to define the long-range connectivity during music processing a PPI analysis was
used to determine which voxels in the brain alter their relationship (connectivity) with a seed
region of interest (the auditory cortex) in a given context, such as during music listening. After
defining the contrasts of interest (e.g., Original versus Tempo Modification music and Original
versus Transposed (key modification) music), BOLD signals were extracted from each seed
region of interest (Left and Right Primary Auditory cortex, anatomically defined) for each
participant (see Figure 3.1).

Figure 3.1 – Seeds (regions of interest) anatomically defined on T2 template: (a) Right and (b)
Left Primary Auditory Cortex.

These BOLD signals were used for putting together the PPI design matrix that contains the
seed region’s time course, the task time course, and the interaction term. The latter is the
element-by-element product of the seed time course (physiological variable) with the task
time course (psychological variable), which is a vector coding for a specific task (e.g. Original
music vs Tempo), convolved with the HRF.
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Next, two standard psychophysiological (PPI) analyses were carried out (one for each seed
region, respectively) for each subject using the Generalized PPI toolbox that also supports
standard PPI analysis (McLaren et al., 2012), in order to detect task-specific changes in the
relationship between the seed regions and different brain areas (Friston et al., 1997). A task-
specific increase in the relationship between brain regions suggests an increase in the exchange
of information. Subject-specific contrast images using the contrast (0 1 0), where the second
column in the design matrix represented the psychophysiological interaction (PPI) term, were
then entered into second-level analyses to identify clusters of voxels for which the PPI effect
was significantly present.

In more detail, two sample t-tests, one for each seed region (right and left primary auditory
cortex anatomically defined), were performed for each pair of groups (Preterm-Music versus
Preterm-Control, Preterm-Music versus Full-Term and Preterm-Control versus Full-Term).

3.1.2.6 Multiple comparisons correction at cluster level

For corrections of multiple testing at 0.05 FWE of each statistical map, the individual voxel
threshold was set at p < 0.005 and the corresponding threshold of cluster size was set based
on the Random Field Theory (RFT).

RFT corrections attempt to control the FWE rate by assuming that the data follow certain
specified patterns of spatial variance so that the distributions of statistics mimic a smoothly
varying random field. RFT corrections work by calculating the smoothness of the data in a
given statistic image and estimating how unlikely it is that cluster with particular statistic
levels would appear by chance in data of that local smoothness. Finally, RFT methods are
computationally extremely efficient and offered by SPM.

In more detail, the corresponding thresholds defined by the RFT corrections were: FWEc: 171
for the one-sample t-test and FWEc: 257, FWEc: 207 and FWEc: 474 for Music vs Non-music
group for right primary auditory cortex (A1), Music vs Full-Term group for left A1 and Music vs
Full-Term group for right A1, respectively. Therefore, all the identified clusters were significant
at cluster level with p<0.05 FWE (for more details see Table A.3, A.4, and A.5 in Appendix A).

3.1.3 Results

The present results explore the effective connectivity of the primary auditory cortex (seed re-
gions) with the entire newborn brain; i.e., how is connectivity modulated by music processing
studied by different types of musical conditions (Original music, Tempo modification, Key
modulation, Background music, see below) in preterm infants at term equivalent age and
full-term infants.

A group of preterm infants had listened to the Original music for several weeks during their
NICU stay prior to term age and another group of preterm infants received a caregiver blinded
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intervention with headphones but without music.

Brain network based music processing as a function of music exposure: We examined
between-group differences across the following experimental conditions: Original-music,
Tempo-Modification music (same melody played 40% faster) and Transposed-music (same
melody key transposed: B/Eb).

3.1.3.1 Original music versus Tempo-Modification

A stronger connectivity between the right primary auditory cortex and right thalamus (p <
0.009 FWE at cluster level), left middle cingulate cortex (MCC) (p < 0.01 FWE at cluster level)
as well as with the left caudate nucleus (p < 0.01 FWE at cluster level) was observed during
Original > Tempo modified music condition for the Preterm-Music group compared to the
Preterm-Control group.

When comparing the Preterm-Music group to the Full-term group, during the Original >
Tempo-Modification condition, the connectivity between the left primary auditory cortex
region and the left superior temporal gyrus (STG) (p < 0.03 FWE at cluster level) and the left
MCC (p < 0.01 FWE at cluster level) was stronger for the Preterm-Music group. In the same
way, the connectivity between the right primary auditory cortex and left MCC and putamen (p
< 0.001 FWE at cluster level) was increased (See Figure 3.2) for the Preterm Music-group.

To further explore this stronger connectivity when listening to the Original music compared
to the Tempo modified music condition, we explored the PPI data for each group separately.
We found significant PPI effects (Original > Tempo-Modification condition) for the Preterm-
Music, but not for the Preterm-Control and Full-term infants. In more detail, during the
Original > Tempo-modified condition, the connectivity between the left primary auditory
cortex and left MCC (p < 0.007 FWE at cluster level), right caudate nucleus and putamen (p <
0.01 FWE at cluster level) was increased in Preterm-Music group (See Figure 3.3). A similar
trend was observed between the right auditory cortex and left MCC, right caudate nucleus
and putamen but failed to pass the statistical significance test based on the corrected p-values
(p = 0.275 FWE) (See Figure 3.3).

The connectivity between the primary auditory cortices and the rest of the brain for the
Tempo-Modification > Original music conditions was not increased in any comparison (e.g.,
Preterm-Music compared to Preterm-Control or to Full-term). Furthermore, Preterm-Control
and Full-term groups did not show increased connectivity between the primary auditory
cortices and the rest of the brain in any condition when compared to the Preterm-Music
group.
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Figure 3.2 – Each row shows in a sagittal, coronal, and axial plane, results of the PPI analysis
for Original > Tempo-Modification conditions (p < 0.05 FWE at cluster level): (a-b) Enhanced
connectivity in Preterm-Music compared to Preterm-Control group between right primary
auditory cortex (seed) and (a) the right thalamus and (b) the left caudate nucleus and middle
cingulate cortex (MCC; p < 0.01 FWE at cluster level). (c-d) Enhanced connectivity in Preterm-
Music compared to Full-Term group between left primary auditory cortex (seed) and (c) the
left superior temporal gyrus and (d) the MCC. (e) Enhanced connectivity in Preterm-Music
compared to Full-Term group between right primary auditory cortex (seed) and (e) the left
MCC cortex and left putamen.

3.1.3.2 Original music versus Key-Transposition (absolute pitch)

Finally, we compared the connectivity between left and right primary auditory cortex and the
rest of the newborn brain during Original versus Key-Transposed music conditions. In this
case, no difference was found in any group (one sample t-test) and no difference was found
between groups (two-sample t-test).
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Figure 3.3 – PPI results for Original > Tempo-Modification conditions (p < 0.05 FWE at cluster
level): enhanced connectivity in Preterm-Music infant between left primary auditory cortex
(seed) and (a) the left MCC and (b) the right caudate nucleus and putamen. No significant
activations were found for Preterm-Control and Full-Term groups.

3.1.3.3 Background music versus Silence

We did not observe any difference between background condition and silence condition.
We suppose that this absence of difference may be linked to the lower sound level of the
background stimuli and that babies did not hear the background stimuli due to the high noise
level in the MRI. The background only results are thus not presented in a figure.

3.1.4 Discussion

The aim of the current study was to explore cortico-subcortical music processing in the
newborn and assess if early music exposure during NICU stay modulates brain processing
of music in preterm infants at term equivalent age so that they can recognize the melody,
differentiate its tempo and its absolute pitch at term equivalent age.

We hypothesized that music intervention would change effective connectivity between pri-
mary auditory cortex and brain regions implicated in music temporal processing (e.g. basal
ganglia) when listening to known or Tempo modified music (Original versus Tempo-Modification).
Thus, we used music played 40% faster (Tempo-Modification music) meaning we modified
its tempo, but not the melody. Preterm-Control and Full-term infants (both groups without
previous music exposure) did not modify connectivity of their auditory cortices for either
Original or Tempo-Modification conditions. It has previously been observed by EEG record-
ings that full-term newborns may detect sudden rhythm change (Winkler et al., 2009) and
modification of temporal relations within a train of sounds (Háden et al., 2015). Nevertheless,
in our study the entire stimulus was presented faster meaning there is no violation or temporal
difference within the music piece. Thus, this absence of difference in processing between
the two tempi in our two control groups may be explained by the fact that they processed
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the unknown musical structure independently of the different tempi because they were not
exposed to previous specific tempo.

In contrast the Preterm-Music group, showed stronger connectivity between the left primary
auditory cortex and right dorsal striatum (caudate nucleus and putamen) during Original
music (compared to Tempo-modification) (Figure 3.3 b.). Furthermore, between group com-
parisons indicated a higher connectivity in Preterm-Music newborns between right primary
auditory cortex and left caudate nucleus (Preterm-Music > Preterm-Control; Figure 3.2 b.) and
between primary auditory cortices and left putamen and superior temporal gyrus (Preterm-
Music > Full-term; Figure 3.2 c. & e.) when listening to Original music (compared to Tempo-
modification). These findings are in line with an important corpus of literature about the role
of the basal ganglia and its connectivity with cortical areas in temporal structure processing
(for a review see: (Péron et al., 2013), an enhanced functional connectivity between putamen
and superior temporal gyrus observed in adults during perception of beat rhythms compared
to non-beat rhythms (Grahn and Rowe, 2009) and brain lesions in the striatum having been
found to impair tempo detection (Schwartze et al., 2011). Taken all together, our results indi-
cate that Preterm-Music infants, unlike Preterm-Control and Full-term newborns, processed
the Original music differently from the Tempo-modified music, and that specific cortical and
subcortical networks are involved in the detection of tempo variation at early age. However,
increased activity was seen only for the Original music (compared to Tempo-Modification) and
not for Tempo modification music (compared to Original). Thus, the increased functional con-
nectivity observed during Original music compared to Tempo-modification music in preterm
infants with the music intervention might reflect either an increased cortico-subcortical pro-
cessing of known temporal features or to specific tempo recognition. These findings can also
be interpreted in the context of the infants’ abilities to extract regularities during specific
dynamic pattern exposures (here music) creating thus a kind of early perceptual habit as
defined by Graybiel (2008). Furthermore, extensive research has shown that noise levels in
NICUs are often higher than general recommendations (White et al., 2013; Lahav, 2015). This
loud noise has a negative effect on the stability of the cardio-respiratory system, behavior and
sleep of the preterm infants (Aly and Ahmed, 2016; Joshi and Tada, 2017) and is presumed to
have long lasting effects in preterm infants language and behavioral development (Lahav and
Skoe, 2014). Our results support the view that preterm infants can learn from their auditory
environment and that preterm infants could have memory also for auditory dis-stimulation
and thus warrant for ambient noise reduction in NICU.

By comparing connectivity between primary auditory cortices and the rest of the brain during
Original versus Key-Transposed music conditions we have tested if (ii) music intervention
can increase functional connectivity between primary auditory cortex and regions implicated
in absolute pitch processing. We did not find differences in connectivity within or between
groups. Prior studies using ERP’s reported that pitch processing is already present in full-
term newborns (Háden et al., 2009), and that newborn process differently music with key
shifts inside the music piece (Perani et al., 2010). However, in these previous studies, key
modulations were presented either as deviant or as alteration of the melody. In contrast,
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in our study, the entire music excerpt was transposed to a different key and melody was
preserved. Thus, Preterm-Control and Full-term infants process equally both Original and
Key-Transposed music conditions, which might be due to preserved melody.

Lastly, preterm newborns with music intervention did not show any difference in Original and
Key-Transposed music processing either. Therefore, our findings suggest that music exposure
did not enhance cortical processing of absolute pitch. However, the lack of difference in
cortical processing in Preterm-Music group could also be explained by a learning of the
melody (relative pitch information) they heard during music intervention independently of
absolute pitch information. In line with this finding, Plantinga and Trainor (2005) showed that
key transposition do not affect melody recognition in 6 month-old infants.

A final question that can be addressed is to what extent music processing presents familiarity
concerning memory for listened music. As mentioned before, increased functional connectiv-
ity was found in favor of the Preterm-Music infants at group level (one sample t-test) when
listening to known tempo (Original > Tempo-Modification) (Figure 3.3 a. & b.). Similarly,
higher connectivity was found at second level analysis (two-sample t-tests) in Preterm-Music
compared to either Preterm-Control (Figure 3.2 a. & b. and Figure 3.2 . d. & e.) or Full-term
(Figure 3.2 d. & e.) when listening to Original music (compared to Tempo-modification). How-
ever, no difference of connectivity between the primary auditory cortices and the rest of the
brain was observed under the Tempo-Modification-Music > Original music condition in the
Preterm-Music group (compared either to Preterm-Control or to Full-term groups), suggesting
that this effect does not rely on simple tempo detection ability but rather on memory for the
tempo. Putamen and thalamus have been shown to be activated more for familiar than for
unfamiliar music (Pereira et al., 2011). Moreover, dorsal striatum has been shown to activate
more for beat prediction than beat detection (Grahn and Rowe, 2013). Thus, our findings are
in line with previously published work in adults showing higher activity in putamen when
listening to the known beat than to a new beat. Thus, putamen activity may be dependent on
the familiarity of the perceived rhythm. In our study, faster tempo music activated the dorsal
striatum less than the original music, indicating that Tempo-Modification rhythm may be
perceived as less familiar by the Preterm-music infants. Also, activation of MCC and superior
temporal areas for familiar music has been shown to be dependent on musical expertise
(Groussard et al., 2010a). It can thus be suggested that preterm-infants probably acquired
specific tempo processing expertise during these weeks of music exposure. Furthermore, it is
known that familiar music is perceived as more pleasant (Schellenberg et al., 2008). In adults,
thalamus activity correlates to chills intensity when listening to pleasurable music (Blood and
Zatorre, 2001). It has further been shown that consonant (Trost et al., 2014), pleasant (Koelsch
and Skouras, 2014) and emotional arousing music (Trost et al., 2011) activates dorsal striatum.
Thus, increased connectivity between auditory cortices and thalamus and dorsal striatum
in Preterm-Music infants may not only reflect their sensitivity to the known music and the
processing of its tempo as familiar but these results are also compatible with the hypothesis
that this specific known music tempo induces a more arousing and pleasant state.
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3.1.5 Conclusion and future implications

In conclusion, this study addresses important basic questions of music processing in preterm
and full-term newborns relevant for designing music interventions for NICU patients. The
study shows that music can have lasting learning effects on music processing with an increased
effective connectivity between primary auditory cortex and brain regions implicated in tempo,
familiarity and pleasant music processing. One can argue that, based on our results, preterm
newborns are able to implicitly recognize a known musical temporal structure at a specific
tempo and that listening to this known music evokes brain modulations of regions known to be
involved in perceptual habits and related emotional aspects. Our findings bring new insights
for supporting music exposure to preterm infants in the NICU. Rhythm processing has further
been shown to be especially important for language processing and recognition. Here, we
showed that early postnatal music intervention increases neural responses related to tempo
processing and recognition in music. This might be relevant for language processing and
recognition later in life. Based on these results, it is interesting to mention that future musical
interventions in NICU should target tempo and rhythms aspects rather than absolute pitch
processing because the sensitivity of these kinds of information at this stage of development
seem more important compared to the one related to absolute pitch processing. However,
additional studies are also needed to explore if the increased connectivity between regions
implicated in tempo processing and recognition have an impact on the processing of other
stimuli such as speech and singing. Lastly, we hope that longitudinal follow-up of these infants
might reveal the impact of early music exposure on neurodevelopmental outcome.
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Abstract

Music is known to induce emotions and activate associated memories, including musical
memories. In adults, it is well known that music activates both working memory and limbic
networks. We have recently discovered that as early as during the newborn period, familiar
music is processed differently from unfamiliar music. The present study evaluates music
listening effects at the brain level in newborns, by exploring the impact of familiar or first-time
music listening on the subsequent resting-state functional connectivity in the brain. Using a
connectome-based framework, we describe resting-state functional connectivity (RS-fc) mod-
ulation after music listening in three groups of newborn infants, in preterm infants exposed
to music during their Neonatal-Intensive-Care-Unit stay, in control preterm, and full-term
infants. We observed a modulation of the RS-fc between brain regions known to be implicated
in music and emotions processing, immediately following music listening in all newborn
infants. In the music exposed group, we found increased RS-fc between brain regions known
to be implicated in familiar and emotionally arousing music and multisensory processing,
and therefore implying memory retrieval and associative memory. Finally, we demonstrate
a positive correlation between the occurrence of the prior music exposure and increased
RS-fc in brain regions implicated in multisensory and emotional processing, indicating strong
engagement of musical memories; and a negative correlation with the Default Mode Network,
indicating disengagement due to the aforementioned cognitive processing. Our results de-
scribe the modulatory effect of music listening on subsequent brain resting-state functional
connectivity in newborns that can be linked to brain correlates of musical memory engrams
in preterm infants.

45



Chapter 3. Unveiling the effects of intervention in preterm infants with task-based and
resting-state fMRI

Keywords: Prematurity, Resting-state fMRI, Connectomics, Engrams, Brain networks, Func-
tional connectivity, Musical memories

3.2.1 Introduction

Understanding the preterm infants’ brain maturity and its functional integrity is pivotal for
developing new individually oriented care interventions, such as music for preterm infants in
the neonatal intensive care unit (NICU). Resting-state functional magnetic resonance imaging
allows the assessment of functional connectivity (RS-FC) between resting-state networks
(RSNs), and is an ideal way to study the functional networks of the preterm infants’ brain. In
fact, functional connectivity at rest has been shown to provide information about basic brain
processing, brain maturity and integrity (Bäuml et al., 2015; Dosenbach et al., 2010; Pruett et al.,
2015). Consistent RSNs are found across healthy adults, and most of these networks are also
observed in children, infants, and neonates (Doria et al., 2010; Lordier et al., 2019; Thornburgh
et al., 2017). These RSNs have been linked to brain functions, such as sensorimotor, visual,
auditory, as well as higher-order cognitive processes (Doucet et al., 2011; Reineberg et al., 2015;
van den Heuvel and Pol, 2010).

Even if RSNs are consistently present in healthy adults, a variation of the functional con-
nectivity within and across them has been previously observed. Cognitive, motor, or music
expertise has been linked to an increased RS-FC between regions involved in the processing of
the aforementioned expertise (for a review see Cantou et al. (2018)). A number of previous
studies have compared RS-FC in musicians and non-musicians and found RS-FC connectivity
between limbic, sensorimotor, and auditory regions to be correlated with the number of years
of practice (Palomar-García et al., 2017; Zamorano et al., 2017). Recently, we have shown that
even a session of receptive music listening in the NICU can provoke a functional network
reorganization at term-equivalent age (TEA) (Lordier et al., 2019). Higher RS-FC was found in
the music intervention group both in sensory functional networks and in networks implicated
in higher-level functions, namely between auditory, sensorimotor, thalamus, salience network,
superior frontal, and precuneus networks. Hence, past musical experience has effects on brain
RS-FC development that can be observed at 40 weeks of gestational age in preterm infants.

In adults, RS-FC is also influenced by a particular state of mind, mood, and preceding stimulus-
induced brain activity. It has been shown that hypnosis (Demertzi et al., 2011), acupuncture
(Dhond et al., 2008), sad mood induction (Bernat and Stępień, 2010; Harrison et al., 2008),
stress (van Marle et al., 2010), anxiety (Simpson et al., 2001), emotion induction (Eryilmaz et al.,
2011), and attention tasks (Elton and Gao, 2015) induce a variation on the subsequent RS-FC
in adults. Furthermore, modification of RS-FC has also been observed after music listening
in adults. Additionally, pleasant and relaxing music was used to reduce pain perception in
fibromyalgia patients (Garza-Villarreal et al., 2015). To this end, patients were asked to listen
to their preferred relaxing music. When comparing RS-FC before and after the musical stimuli,
a modulation of RS-FC between brain regions related to music, pain, and analgesia processing
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was observed. The RS-FC of the angular gyrus was especially modified after music listening, a
region which is connected to parietal, temporal, and frontal regions, representing networks
implicated in multisensory information integration (Seghier, 2013) and in memory, allowing
the recognition of the music as familiar (Platel et al., 2003). Listening to familiar, pleasant
and soothing music may thus impact brain states and subsequent RS-FC. Furthermore, in
the present study, preterm infants had listened to the same musical composition during their
entire stay in the NICU, and this music was presented prior to waking-up or falling asleep
and in moments of alertness to interact with the environment, which are considered to be
meaningful salient events for these newborns. Indeed, when preterm infants listen to this
same music during an fMRI experiment, brain regions implicated in emotionally arousing and
familiar music processing, are activated (Lordier* et al., 2018).

In this recent task-based fMRI study, we observed brain functional connectivity modulation
during music listening in newborns. We used Psychophysiological Interaction Analysis (PPI),
which estimates context-specific changes in coupling between a seed region and the rest of the
brain, to argue that music listening during NICU stay improves music processing in preterm
newborns (Lordier* et al., 2018). When preterm infants listened to the known music (heard
previously in the neonatology) compared to the same music played 40% faster (changing
the tempo), the functional connectivity of the auditory cortex with putamen caudate and
thalamus was increased. We interpreted this increased connectivity both in terms of tempo
processing expertise and of familiar music processing since these brain regions have been
shown in adults to be activated more for familiar than for unfamiliar music (Freitas et al., 2018;
Pereira et al., 2011) and for beat prediction than beat detection (Grahn and Rowe, 2013). We
concluded that, due to the early music intervention, preterm newborns acquired expertise in
music feature processing, and the music they heard during their hospitalization had become
familiar to them (Lordier* et al., 2018). Furthermore, familiarity is considered as a semantic
memory process, i.e. a long-term storage of music (Groussard et al., 2010b), and an implicit
memory phenomenon dependent on the integrity of pitch and rhythm perception (Peretz
et al., 1998). Also, adult musicians, compared to non-musicians, have larger auditory working
memory (Parbery-Clark et al., 2009). The familiarity effect that we observed in this previous
experience may thus therefore be directly linked to an auditory memory effect.

Finally, learning tasks induce changes in subsequent resting-state functional connectivity,
which have been shown to be correlated with improvements in later task performance (Gre-
gory et al., 2014). It is also worth noting that subsequent RS-FC may not be increased only
between brain regions activated during encoding, but also between these brain regions and
regions implicated in later retrieval. Increased functional connectivity after a memory task
has been observed between the hippocampus and cortical regions involved both in encoding
and retrieval, and this RS-FC predicted later memory performance (Tambini et al., 2010).
Additionally, after a memory task, Risius and colleagues (Risius et al., 2019) showed increased
subsequent RS-FC between brain regions activated during the task (including inferior occipital
and fusiform gyri) and the middle temporal gyri, which was found to mediate later retrieval.
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The question now being addressed is how music listening modifies the distributed brain net-
works in preterm and full-term newborns, measured by the subsequent RS-FC. We additionally
hypothesize that preterm infants who were already exposed to music listening during their
NICU stay would increase their RS-FC between brain regions implicated in the formation and
retrieval of musical memories. To this end, we used connectomic and multivariate techniques
on the MRI based functional connectomes (Fornito et al., 2015; Sporns et al., 2005).

3.2.2 Methods

3.2.2.1 Population

The present study was approved by the Research and Ethics Committees of the University
Hospital of Geneva and informed written consent was obtained from the parents before
participating in the study. Thirty-nine preterm and twenty-four full-term infants (FT) were
recruited at Geneva University Hospital neonatal units. The preterm newborns were randomly
assigned to either music intervention (PM: n=20) or standard of care group (PC: n=19). All
infants underwent magnetic resonance imaging at 40 weeks gestational age (GA).

Inclusion criteria for full-term newborns were birth after a GA of 37 weeks, an appropriate
height, weight, and head circumference (above the 10th and below the 90th percentiles).
Exclusion criteria for all babies were major brain lesions, such as high-grade intraventricular
hemorrhage or leukomalacia (1 PC and 2 FT were excluded). Four preterm and three full-
term infants dropped out of the study before completion of the MRI (3 PM, 1 PC, and 3 FT).
Technical problems during the MRI prevented us from acquiring the necessary data for 1
preterm infant (1 PC). Furthermore, of due to high levels of motion, RS-fMRI data from six
infants were not used in subsequent analyses (2 PM, 1 PC, and 3 FT) – see Figure A.1 in
Supplementary Material Section.

The final analysis, after removal of motion corrupted MRI volumes, was performed on 15
premature babies in the PM group (8 girls, mean GA at birth: 29.16 weeks) scanned at TEA
(mean GA at scan: 40.28 weeks), 15 premature newborns in the PC group (8 girls, mean GA
at birth: 28.95 weeks) scanned at TEA (mean GA at scan: 40.50 weeks) ,and 16 FT (9 girls,
mean GA: 39.51 weeks) scanned in the first 4 days of life (mean GA at scan: 39.83 weeks).
No statistically significant differences (using ANOVA for numerical and chi-squared test for
categorical variables) in gender, GA at birth, birth weight, birth height, head circumference at
birth, neonatal asphyxia, chorioamnionitis, sepsis (positive blood culture) ,bronco-pulmonary
dysplasia (Jobe and Bancalari, 2001), intraventricular hemorrhages grade 1 and 2 (Papile
et al., 1983), and mean number of music/no-music intervention sessions were observed
between the two preterm groups. Furthermore, no differences in gender, GA at scan and
parental socioeconomic status (SES) were observed across the three groups. The population
characteristics and the results of the aforementioned statistical tests are presented in Table
A.6 and Table A.10 in the “Statistical tests for clinical variables” subparagraph in Appendix A.
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3.2.2.2 MRI Acquisition

Before the MRI, all infants received breast or formula feeding, were swaddled in a blanket,
and set up in a vacuum pillow for immobilization. No sedation was used and the infants were
scanned while resting quietly in the scanner. To protect infants from the noise of the scanner
and to deliver the music, MR-compatible headphones were used (MR confon, Magdeburg,
Germany).

Two RS-fMRI runs (run 1, run 2) of eight-minute duration were acquired resulting in 300 vol-
umes using an EPI sequence with TR=1600 ms, TE=30 ms, slice thickness = 3mm on a Siemens
3-T scanner. Between these two RS-fMRI runs, the music used for the musical intervention
during the hospitalization was presented to all infants (3 groups) in a task-based fMRI run of
eight minutes. The musical stimulus was thus, familiar only to the Preterm-Music group (PM).
The two resting-state sequences were acquired immediately before and after music listening
and infants stayed in the scanner during the entire protocol. Also, T2*-weighted structural
images were acquired for anatomical reference (113 coronal slices, TR=4990 ms, TE=151 ms,
voxel size=0.78x0.78x1.2 mm3). The acquisition protocol was identical for all three groups.

Figure 3.4 – Flowchart showing the preprocessing and network construction pipeline. This
procedure was repeated for each subject and each run.

3.2.2.3 Music

The music was especially created by Andreas Vollenweider composed of a soothing back-
ground, bells, harp, and punji (charming snake flute) tones (http://vollenweider.com). This
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music was chosen based on behavioral responses of preterm newborns to the instruments
(observed by a nurse specialized in developmental care) and its duration was eight minutes.
Extracts of this music were played to all groups between the two RS-fMRI acquisitions. The
PM group underwent musical intervention during the hospitalization using headphones, five
times per week (mean number: 25 ± 8.92, range: 7 to 35), from 33 weeks GA until the MRI scan
(see Table S2 in Supplementary Material Section for more details). The control group had the
same handling as the intervention group (namely putting headphones) but the headphones
were made open to environmental sounds, as such representing an active control group. Music
and no-music sessions were administrated once a day, five days per week. For more details
see (Lordier et al., 2019).

3.2.2.4 Data Preprocessing

For each subject, the functional data were first realigned to the mean functional volume
and then co-registered to the structural image using Statistical Parametric Mapping soft-
ware SPM12 [Wellcome Department of Imaging Neuroscience, (www.fil.ion.ucl.ac.uk/spm/
software/spm12/)]. All volumes with a frame-wise displacement (Power et al., 2014) greater
than 0.5 mm or with a rate of BOLD signal changes across the entire brain (DVARS) greater
than 3% were removed, along with the previous and the two successive images. The remaining
images were included for further analysis. Six babies were excluded from subsequent analyses
due to high levels of motion in data from run 1 and/or run 2. The above steps are summarized
in the flowchart presented in Figure 1. Finally, the three groups were balanced in terms of
remaining MRI scans for both sessions.

3.2.2.5 Functional Connectome Construction

To extract regional time-series from the RS-fMRI data, the UNC neonatal AAL atlas (Shi et al.,
2011) consisting of 90 regions was used. First, the atlas was registered to each subject’s native
(T2) space using Advanced Normalization Tools (ANTs, Avants et al. (2011)) with Symmetric
normalization algorithm with cross-correlation as optimization metric algorithm (SyNCC
cost function). To do so, the fixed and moving images were chosen to be the T2 and the atlas
intensity model images, respectively, so that the original volumes are not altered.

After obtaining the forward deformation field (i.e., going from the atlas space to the native
space), the deformation was applied to the UNC tissue probability maps of Gray, White matter,
and CSF (TMPs), as well as to the 90 regions atlas (label image). The output of this step is
the UNC atlas and the three TPMs in the native subject’s T2 space. Next, using these TPMs,
the subject’s T2 image is segmented using SPM8 and the subject-specific GM, WM and CSF
probability maps are obtained in the T2 space.

Furthermore, to ensure that we extract BOLD signals only from GM voxels, the UNC atlas in
the native space was masked using the subject-specific tissue probability maps obtained by
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the segmentation step. If the probability of one voxel being GM was less than the probability
of this voxel being WM or CSF (P(GM) < P(WM) or P(GM) < P(CSF)), then this voxel was not
considered as GM and it was excluded from the atlas. The output GM-masked UNC atlas in
the T2 subject space for one subject is shown in Figure 2, where the color coding corresponds
to the atlas labeling.

Figure 3.5 – Example of the final GM-masked atlas of one subject. Only BOLD signals from
GM voxels are considered. Color coding corresponds to the atlas labeling.

The GM-masked atlas was then resliced to the functional (BOLD) space and the average
regional BOLD time-courses were extracted, after performing voxel-wise nuisance regression
(CSF, WM, motion signals) and detrending, yielding a matrix with dimensions [number of
volumes, 90] for each subject and each RS-fMRI run (before and after the musical stimulus
presentation). The average regional time-courses were finally bandpass filtered ([0.01Hz –
0.1Hz]) to discard noise components.

Lastly, the functional connectome of each subject was constructed based on the accordance
measure (Meskaldji et al., 2015c) that captures coupling between brain regions. This resulted
in a 90 by 90 functional connectome (with 4005 unique connections) per run for each subject
represented by a 90 by 90 symmetric weighted matrix (see Figure 3.5), which can be used for
connectome-based statistical analysis and multivariate modeling.

3.2.2.6 Statistical Connectome-based analysis

Investigating the short-term effect of music listening on subsequent RS-FC

To investigate whether the functional connectivity was altered after the presentation of a mu-
sical stimulus, connection-wise (using the upper triangle part of the functional connectomes)
one-sided paired t-tests (between run 2 and run 1) were performed for each group, separately.
Additionally, the Cohen’s d metric was calculated for each test to characterize the effect size
and to complement the statistical analysis given that the statistical power is limited due to
the small sample sizes. The statistical tests were employed to address the scientific question
of interest (run 2 > run 1). A positive t-value would indicate increased connectivity for that
specific connection in run 2 (after the presentation of the musical stimuli) compared to run 1
(before the stimuli).

51



Chapter 3. Unveiling the effects of intervention in preterm infants with task-based and
resting-state fMRI

Investigating the brain trace of a familiar musical stimulation in the Preterm-Music group

To unveil changes in the functional connectivity evoked by the familiar musical stimuli (pre-
sented between the RS-fMRI runs) in the PM group, the group-specific p-value vectors, re-
sulted from the previous step (see first paragraph in Statistical Connectome-based analysis
section) were used. First, we converted the p-values obtained in the previous step into z-
scores (ZP M , ZPC ) encoding the effect of interest (increased functional connectivity in run 2
compared to run 1). The conversion (p-values to z-scores) was performed using the quantile
function of the normal distribution and thus, the z-scores follow the standard normal distri-
bution under the null hypothesis. Next, to explore the short-term effects of the intervention
on the functional connectivity of the Preterm-Music group (the effect of listening to the same
music), we accounted for the effect that the Preterm-Control group experienced (i.e., listening
to music for the first time during the MRI scan) by subtracting the z-score of the PC group from
the one of the PM group. We then made the resulted vector of differences normally distributed
under the null:

ZP M °ZPCp
2

ª N (0,1) (3.1)

Here, we divided by
p

2 to obtain valid z-scores with zero mean and unit standard deviation
(based on the Variance Sum/Difference Law we have):

var (ZP M °ZPC ) = var (ZP M )+ var (ZPC )°2cov(ZP M , ZPC ) = 2,

assuming that 2cov(ZP M , ZPC ) = 0 under statistical independence of the group-specific z-
score vectors that holds in this case (independent groups).

This enables us to define a z-score threshold that correspond to a specific p-value under the
null (e.g., z-threshold of 2.58 corresponds to a p-value of 0.005) and to obtain significant results
at the specific alpha level.

Multivariate modeling: Exploring the dosage effect of prior music listening on the functional
connectivity

To further investigate neural correlates of the music intervention effect on the brain’s functional
connectivity, multivariate brain-outcome associations for the Preterm-Music (PM) group, were
explored using Partial Least Squares Correlation (PLSC) (Krishnan et al., 2011; McIntosh and
Lobaugh, 2004). In this study, the outcome variable was chosen to be the actual number
of times that each PM infant listened to the musical stimuli during the hospitalization i.e.,
the occurrence of the prior musical intervention - dosage (see Table A.7 in Appendix A for
more details). The imaging variables for the PLSC analysis were brain network-based features.
For each subject in the Preterm-Music group, a brain graph was created by treating the FC
connectome as a weighted, undirected, symmetric adjacency matrix. Next, the nodal strength
of all 90 vertices of the graph (brain regions) were estimated. The procedure was repeated
for each run (run 1 & run 2), resulting in two vectors of nodal strengths per run for each PM
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infant.

Since our goal was to relate RS-FC changes (imaging variables), induced by the musical
stimulus, to the actual number of music listening episodes during hospitalization (outcome
variable), the difference (delta) of the two nodal strength vectors (estimated as described
above) was computed (run 2 - run 1). If we would only use the brain nodal measures of run
2 (i.e., using only the post musical stimulus presentation nodal strength) then we would not
ensure that we focus on pure stimuli-induced connectivity changes. By doing so, we ensure
that the outcome variable is going to be related to the actual change of brain connectivity
induced by the musical stimulus. A positive delta nodal strength value indicates increased
nodal strength of the corresponding brain region in run 2 compared to run 1, i.e., following
the musical presentation. The subject-specific delta vectors were used as imaging variables
for the PLSC analysis.

PLSC details

The core of the PLSC method is the singular value decomposition (SVD) of the cross-covariance
matrix R = USVT defined as R = YT, X 2 RNoutcomes£Ni mag i ng , where Y is a matrix storing the
outcome variables (one outcome variable in this study) for each subject as rows and X is a
matrix storing the imaging variables (Y 2RNsub j ect s£Noutcomes , X 2RNsub j ect s£Ni mag i ng ). In this study,
the matrices X (dimension [15 x 1]) and Y (dimension [15 x 90]) were z-scored across subjects
prior to the construction of matrix R. Given that we only have one outcome variable, the
estimated cross-covariance matrix R has dimension [1 x 90].

The SVD of R results in correlation components composed of a set of outcomes (column of
U) and brain salience weights (columns of V). In the present study we only have one PLSC
component considering R has dimension [1 x 90]. This component is associated with a singular
value (value in S) that specifies the explained cross-correlation along this dimension similarly
to the explained variance in a Principal Components Analysis (PCA) analysis. Outcome and
brain imaging salience weights (U, V) indicate how strongly each input variable contributes to
the multivariate outcome-brain correlation in this component.

To assess the statistical significance of the PLSC component, permutation testing was per-
formed and finally, to evaluate the stability and importance of the brain and behavior saliences,
bootstrapping with replacement was used as in Krishnan et al., and Zöller et al. Krishnan et al.
(2011); Zöller et al. (2019). These two steps provide complementary information about the
statistical significance of the component (permutation testing) and the stability of regional
contributions (elements of the saliences) to the multivariate pattern (bootstrap resampling,
McLaren et al. (2012)), (see “PLSC Details” in Appendix A, Section A.2 for more details). Signifi-
cant PLSC results (salience weights) are reported in terms of bootstrapping mean and standard
deviations for the statistically significant component (as assessed by the permutation testing).
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3.2.3 Results

3.2.3.1 Short term effect of music listening on subsequent RS-FC

All three groups showed distinct effects of music listening on subsequent RS-FC. In Table 3.1,
3.2 and 3.3, we report and present the connections with higher connectivity (accordance) in
run 2 compared to run 1 for each group separately (FT, PC, PM). We only kept connection
differences with corresponding p-values less than 0.001 (uncorrected) due to the reduced
statistical power (small sample size; n=15). However, we also report the Cohen’s d metric that
characterizes the effect size (magnitude of the effect) to accompany the p-values. In Figure
3.6, 3.7 and 3.8 we present these connections in a brain glass surface using BrainNet plotting
toolbox.

Figure 3.6 – Full-Term group run 2 vs. run 1 differences. Edges represent connections that
were increased in run 2 compared to run 1 (see Table 3.1).

Table 3.1 – FT group: Increased functional connectivity between brain regions in run 2 com-
pared to run 1.

Region Region p-value Cohen’s d

Left Fusiform gyrus Left Caudate nucleus 0.00021 0.861
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Figure 3.7 – PC group: run 2 vs. run 1 differences. Edges represent connections that were
increased in run 2 compared to run 1 (see Table 3.2).

Table 3.2 – PC group: Increased functional connectivity between brain regions in run 2 com-
pared to run 1.

Region Region p-value Cohen’s d

Right Thalamus Right Inferior temporal gyrus 4.45E-05 1.1744
Left Superior frontal gyrus, medial Right Inferior temporal gyrus 0.00015 1.2131
Left Median cingulate and
paracingulate gyri

Right Inferior temporal gyrus 0.00038 1.3858

Left Precentral gyrus Right Middle temporal gyrus 0.00042 0.9495
Left Supplementary motor area Right Inferior temporal gyrus 0.00049 1.5041
Right Parahippocampal gyrus Left Caudate nucleus 0.00079 1.0203
Left Anterior cingulate and
paracingulate gyri

Right Inferior temporal gyrus 0.00079 0.9439

Right Middle frontal gyrus Right Inferior temporal gyrus 0.00083 1.036
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Figure 3.8 – Preterm Music (PM) group run 2 vs. run 1 differences. Edges represent connections
that were increased in run 2 compared to run 1 (see Table 3.3).

Table 3.3 – PM group: Increased functional connectivity between brain regions in run 2
compared to run 1.

Region Region p-value Cohen’s d

Left Superior parietal gyrus
Right Temporal pole:
superior temporal gyrus

0.000009 1.217

Left Thalamus
Right Temporal pole:
superior temporal gyrus

0.00036 1.331

Right Middle frontal gyrus, orbital part Right Postcentral gyrus 0.00071 1.513

Left Supplementary motor area
Left Superior frontal gyrus,
medial

0.00074 0.833

Right Amygdala Right Thalamus 0.00087 0.922
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3.2.3.2 Brain trace of a familiar musical stimulus on the Preterm-Music group

In this section, we report the short-term effects of the intervention on the PM group, after
accounting for the effect that the PC group experienced (see the second paragraph in Statistical
Connectome-based analysis section for more details). The results were thresholded using a
z-value 2.58 that corresponds to a p-value 0.005 for the normal distribution.

Table 3.4 – The short-term effects of intervention on the PM group after accounting for the
effect that PC experienced: Increased functional connectivity between brain regions in run 2
compared to run 1.

Region Region z-score difference

Right Middle frontal gyrus
orbital part

Right Calcarine fissure and
surrounding cortex

3.341

Left Thalamus
Right Temporal pole: superior
temporal gyrus

2.918

Left Middle frontal gyrus
orbital part

Right Calcarine fissure and
surrounding cortex

2.803

Right Olfactory cortex Right Angular gyrus 2.672
Left Superior frontal gyrus
medial orbital

Right Calcarine fissure and
surrounding cortex

2.665

Figure 3.9 – The short-term effects of intervention on the PM group after accounting for the
effect that the PC group experienced. Increased functional connectivity between brain regions
in run 2 compared to run 1.
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3.2.3.3 Dose effect of prior music listening on the functional connectivity

To assess the statistical significance of the computed PLSC component, 5000 permutation
tests were performed. The p-value was estimated from the permutation null distribution by
counting the number of times that the permuted singular values (Sp) were above the observed
true singular value (S) of the PLSC component. The permutation null distribution is shown
in Figure S2. The PLSC component was found to be statistically significant based on the
permutation testing (p=0.043).

The outcome (bottom left) and brain imaging (top) saliences (elements of U,V, respectively)
of the aforementioned significant component are shown in the top of Figure 3.10 (x-axis:
index of brain region, y-axis: salience weight). To assess which of these weights are robust,
we used 200 bootstrapping samples and we considered stable salience weights in terms of
bootstrapping mean and standard deviation. These robust brain salience weights (highlighted
with yellow in Figure 3.10 (top), green dots represent the bootstrapped brain salience values)
can be interpreted similarly to correlation values. Error bars indicate bootstrapping 5th to
95th percentiles and bar heights correspond to the mean bootstrapped salience weights.

Moreover, the correlation plot of the brain scores and music experience (intervention dosage)
is shown in Figure 3.10 (bottom right). The set of outcomes and brain imaging salience weights
(U, V) indicate how strongly each input variable contributes to the multivariate outcome-brain
correlation for the corresponding component. Multivariate associations between the outcome
variable (the intervention frequency, i.e., number of music listening during the hospitalization)
and brain imaging variables (delta of nodal strengths; run2>run1) were revealed. Significant
PLSC salience weights are reported in terms of bootstrapping mean and standard deviations
as in Zöller et al. 2019 (Zöller et al., 2019). The exact values of bootstrap mean and 5th to 95th
percentiles are reported in Table A.9 in Appendix A.

We observe a significant positive correlation of the intervention occurrence (i.e., the number
of music listening during hospitalization – dosage) with the positive increase of nodal strength
(delta: run 2 > run1) of L Amygdala, R putamen and L temporal pole (middle temporal gyrus).
On the other hand, there is a significant negative correlation of the intervention frequency
with the positive delta nodal strength (delta: run 2 > run1) in R middle frontal, L Inferior frontal
(triangular part), R superior frontal, L superior frontal (medial orbital), R posterior Cingulate
gyrus, R hippocampus, R parahippocampal, L Inferior Occipital, R Fusiform, L Inferior parietal,
R Inferior parietal, L paracentral lobule, L thalamus, and R middle temporal. These results are
also presented in Figure 3.11 on a brain glass surface using the BrainNet plotting toolbox.
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Figure 3.10 – Partial least squares correlation (PLSC) results for the effect of the intervention
in PM group (number of listening to the musical stimulus during the hospitalization). The
outcome (weight in U; bottom left) and brain imaging saliences (weights in V; top) of the
significant PLSC component (p=0.043, 5000 permutations) are presented. Error bars indicate
bootstrapping 5th to 95th percentiles and robust results are indicated by a yellow background.
Bar heights correspond to the mean bootstrapped salience weights of the significant PLSC
component. Each bar corresponds to one brain region (n=90 in the UNC atlas) and depicts
the brain regional contributions (saliences weights) to the multivariate pattern/correlation.
Bottom right: The correlation plot of the latent variables i.e., the brain scores and outcome
scores, are shown (bottom right, r=0.776, p=0.001). Points represent the PM subjects (n=15).
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Figure 3.11 – Brain glass-surface representation of the Partial least squares correlation (PLSC)
results for the effect of the intervention in PM group (number of listening to the musical
stimulus during the hospitalization). Red color: nodes with significant positive brain-outcome
correlation. Green color: nodes with significant negative brain-outcome correlation. The size
of the nodes is proportional to the salience weights.
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3.2.4 Discussion

Music is known to induce emotions and associated musical memories. In adults, it is well
known that complex auditory sound streams such as music, activate both working memory
networks and limbic networks. We have recently shown that a familiar music is processed
differently from unfamiliar music already in the newborn period. Musical memories are
thought to go beyond the immediate processing of a musical stimulus. The present study aims
to evaluate the effects of familiar and first-time music listening on the subsequent RS-FC in
the brain and to assess the dose effect of prior music intervention.

Modulation of functional connectivity at rest after music listening

Our findings show that music listening can induce modulation of the RS-FC in both hemi-
spheres as early as TEA in preterm and full-term newborns. Even if lateralization tendency has
previously been observed in adults, music processing engages auditory pathways in both left
and right hemispheres (Schirmer et al., 2012). It is thus not surprising to observe increased
functional connectivity between brain regions in both hemispheres as well as between the two
hemispheres after music listening in our newborns. We describe the effect of music listening
on subsequent RS-FC between regions implicated in sensory functions, higher cognitive func-
tions and emotional processing. Listening to music is a complex process for the brain, known
to trigger cognitive and emotional responses with distinct neural substrates. The present
findings suggest that music perception cannot be summarized only by acoustic analysis, since
it also involves auditory memory, processing of interval relations and of musical syntax and
semantics, as well as emotions (Koelsch, 2014).

It is also worth noting that we observed much fewer modifications by music listening of
brain RS-FC in full-term compared to preterm newborns, which confirms prior studies in
which preterm infants, due to earlier extrauterine experience, modify their brain capacity of
sensory and auditory processing (Baroncelli et al., 2010). It has been shown that premature
infants can process auditory stimuli and even possess the ability to process subtle changes of
sounds as early as 29 weeks of gestational age (Mahmoudzadeh et al., 2013). Recent work from
our research group on voice processing in preterm infants shows that preterm infants show
additional cortical regions involved in voice processing in fMRI and a late mismatch response
for maternal voice, considered as the first trace of a recognition process based on memory
representation. This indicates an experience-dependent maturation of brain networks in
preterm infants with the early postnatal exposure to voices (Adam-Darque et al., 2020).

Furthermore, the brain does not develop normally in the absence of external stimuli and
activity of its neuronal system during the respective critical period of development (Morishita
et al., 2010). Deprivation of sounds and specific auditory stimuli, such as vocal sounds, have
been shown to prevent the auditory cortex from maturing and developing normally (Pineda
et al., 2014). Additionally, preterm babies with higher endogenous spontaneous brain activity
in the first 72 hours of life show subsequently better brain growth at term age (Benders et al.,
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2015). The current results, with a significantly higher number of RS-FC modulations after
listening to music in preterm controls infants compared to full-term infants, can be viewed
as an enhanced development, based on sensory stimulation in the neonatal period, and
especially sound processing.

Moreover, when comparing RS-FC immediately before and after music listening, we observed
modulation of RS-FC in different brain regions in preterm and full-term infants. In FT control
newborns, a higher RS-FC was observed between the left fusiform gyrus and the left caudate
nucleus. The caudate nucleus is highly involved in music listening processing. Furthermore,
increased activity of the caudate nucleus has been observed during rhythmic information
processing (Bengtsson and Ullén, 2006) and consonant (Trost et al., 2014), pleasant (Koelsch
and Skouras, 2014) and emotional arousing music processing (Mitterschiffthaler et al., 2007;
Trost et al., 2011). The caudate nucleus is further thought to be involved in sensorimotor
behavior, such as experiencing chills during music listening (Koelsch, 2014). Therefore, the
caudate nucleus is not only implicated in music processing but also in multisensory response
to music listening. In the present study, full-term newborns, after listening to music, displayed
increased functional connectivity between the caudate nucleus and the fusiform gyrus, an-
other region known to be highly implicated in visual and multisensory processing (Zhang et al.,
2016). It has been shown in adult populations, that the fusiform area is activated conjointly,
and increases its functional connectivity, with emotional brain regions (amygdala and insula)
when music is used to enhance the emotional experience during picture or film presentation
(Baumgartner et al., 2006; Pehrs et al., 2014). The fusiform gyrus thus has a crucial role in the
processing of emotional multisensory stimuli. Music listening, therefore, engages multisen-
sory processes and it is thus not surprising to observe higher functional connectivity after
music listening between brain regions implicated in music and multisensory processing.

In PC infants, we observed an increase in RS-FC between the right inferior temporal gyrus
and right thalamus, right middle frontal gyrus, medial part of the left superior frontal gyrus,
left middle cingulate gyrus (MCC) and anterior cingulate gyrus (ACC), left supplementary
motor area (SMA), and between right middle temporal gyrus and left precentral gyrus, as
well as between right parahippocampal gyrus and left caudate nucleus. As in FT, but to a
greater extent, listening to music modulates post-listening RS-FC in PC between brain regions
implicated in music and multisensory stimuli processing. We observed, in both groups, a
modulation of caudate nucleus RS-FC, known, as discussed earlier, to be a multisensory
processing hub network. Interestingly, we also found RS-FC modulation in PC, but not
in FT immediately after music listening between regions known to be implicated in direct
music processing and linked, in adults, to previous music practice, including ACC, MCC,
SMA, inferior temporal gyrus, middle frontal gyrus and superior frontal cortex. Functional
connectivity in ACC and MCC has been shown to be more developed in musicians when
compared to non-musicians (Zamorano et al., 2017). Also, Hou and colleagues (Hou et al.,
2015) observed a higher RS-FC between numerous brain regions, including motor areas and
inferior temporal gyrus, middle frontal gyrus, and superior medial frontal cortex in adult
non-musician depending on previous music practice. As previously reported, unlike full-term
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newborns, preterm infants are exposed to higher variability of ex-utero auditory stimulations
earlier, including different and unfamiliar adult voices and potentially lullabies or songs. We
assumed that due to this variability in auditory extra-uterine stimulations, they developed
specific abilities to process sounds and streams of sounds, such as music, and thus activate
more specific brain regions implicated in such processing during music listening.

Furthermore, we did not only observe modulations of RS-FC between brain regions impli-
cated in music processing, but also in regions linked to novel stimulus processing. In adults,
watching novel visual stimuli (Blackford et al., 2010; Wright et al., 2003), as well as listening to
an unfamiliar language (Karmonik et al., 2016), induces an increased activation in the inferior
temporal cortex. In this study, we observed an increase in the RS-FC between the inferior
temporal cortex and numerous other brain regions after listening to this unknown music.
We thus assume that this increased RS-FC reflects the further processing of the unknown
music that was just heard. Moreover, we observed an increased RS-FC of the inferior temporal
cortex with regions implicated both in music processing and emotional music processing.
More specifically, in adults, the supplementary motor area, ACC, thalamus, middle frontal
gyrus, parahippocampal gyrus, middle temporal gyrus, and caudate nucleus, are activated in
response to the emotion evoked by music (Bogert et al., 2016; Bravo et al., 2019; Brown et al.,
2004; Koelsch, 2014) and to music processing (Alluri et al., 2012; Peretz and Zatorre, 2005). Also,
a recent meta-analysis showed that ACC is more activated during unfamiliar music listening
(Freitas et al., 2018).

We therefore conclude that in PC, novel music listening increased subsequent RS-FC between
brain regions implicated in music, novelty, and emotional processing.

Brain trace of a familiar musical stimulus in the Preterm Music group

In the PM group, listening to music modulated subsequent brain RS-FC between brain regions
implicated in music and multisensory processing, but also between brain regions known to be
linked to processing of familiar music and processing of emotional content. In more detail,
RS-FC between the right temporal pole and the left superior parietal gyrus and left thalamus,
as well as between the right orbitofrontal region (orbital part of the middle frontal gyrus) and
the right postcentral gyrus; left superior motor area and left superior medial frontal gyrus;
and between the right amygdala and the right thalamus was increased after music listening in
the PM group. As mentioned previously, music processing activates motor and sensorimotor
brain regions, including supplementary motor and postcentral gyrus (Gordon et al., 2018),
as well as limbic and paralimbic regions, including amygdala, orbitofrontal (OFC) regions,
thalamus, and temporal pole (Koelsch, 2014). However, RS-FC modulations between the
amygdala and OFC regions were only found in PM group and not in PC or FT groups. Since the
music presented between the two resting-state runs were the same as the one used during the
hospitalization of the PM infants, we infer that modulation of RS-FC between these regions is
not only due to immediate effects of music listening, but also because this music is familiar to
the infants and evokes emotional memories. In adults, music familiarity increases the “liking”
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rate (Ali and Peynircioǧǧlu, 2010), and electrodermal activity (van den Bosch et al., 2013).
Thus, music familiarity may play a role in modulating the emotional response of the listener.
Furthermore, compared to unfamiliar music, familiar music activates more emotion-related
regions, including the amygdala, thalamus, supplementary motor area, temporal poles and
orbitofrontal regions (Pereira et al., 2011), as well as memory-related regions such as superior
frontal and superior parietal regions (Sikka et al., 2015). Also, the superior frontal gyrus and
thalamus have been shown, in a recent meta-analysis, to have the highest likelihood of being
activated when listening to familiar music (Freitas et al., 2018). Thus, the increased RS-FC
observed here between auditory, familiar and emotional brain regions, may reflect musical
memories evoking brain activations similar to familiar music listening.

These results are strengthened by the comparison of the modulation of RS-FC connectivity
immediately after music listening between the two preterm groups (PM group > PC group).
Based on our findings, we observed a greater increase in RS-FC between OFC regions (orbital
part of the right middle frontal gyrus and orbital part of the left middle and superior frontal
gyrus) and right calcarine fissure, and between left thalamus and right temporal pole, as
well as between right olfactory cortex and the right angular gyrus in the PM group. All these
regions can be linked to the multisensory processing induced by music listening, and to
familiar and emotionally arousing music processing, and therefore to associative memory and
memory retrieval of the earlier experienced music (Bonnici et al., 2016). More specifically,
listening to music, in the PM group, led to a greater increase of subsequent RS-FC between the
angular gyrus (a region known to participate in memory retrieval, multisensory integration and
implicated in attention to relevant information (Seghier, 2013)), and brain regions implicated
in visual, olfactory, cognitive and emotional processing. When comparing the PM to the PC
group, PM showed a higher modulation of RS-FC in visual brain regions (calcarine fissure
and surrounding cortex) with numerous other brain regions. In animal models, early tactile
interventions from birth contribute to the acceleration of the visual system development
in rodents, both at behavioral and electrophysiological levels (Cancedda, 2004; Landi et al.,
2007). Another preliminary study on early massage intervention in a preterm population
showed a difference in the maturation of visual function in infants who received massages
in comparison to those who received standard care (Guzzetta et al., 2009). Music exposure
during early ex-utero life may thus have left multisensory brain traces that are reactivated by
familiar music listening through musical memory retrieval. These results are also in line with
the increased RS-FC of the angular gyrus in adults after listening to pleasant, soothing, and
familiar music (Garza-Villarreal et al., 2015). Furthermore, we also found a greater increase of
RS-FC between brain regions known to be linked to familiarity and pleasantness (including
thalamus, orbitofrontal, and superior frontal regions), which is consistent with the fact that
these infants already knew the music (Freitas et al., 2018; Pereira et al., 2011). Previously, using
a Psychophysiological Interaction Analysis, we observed an increased functional connectivity
in preterm infants’ brain between regions implicated in music processing, familiarity and
pleasantness during known music listening (Lordier* et al., 2018). Here, we further show
that increased functional connectivity linked to this familiar and pleasant music listening
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is present at rest, minutes after music listening, indicating the presence of an associative
memory process for the familiar music (Platel et al., 2003).

Preterm infants with early music intervention listened to a music that was especially composed
for them during their hospitalization. During weeks, this music was used to punctuate the day
of these preterm infants. It is now well known that events, and even more repeated and mean-
ingful events, leave a trace on brain structure and function. Memory encoding and retrieval
processes, including musical memories, lead to the joint activation of different populations of
neurons. This eventually results in an increase in the synaptic strength between this ensemble
of neurons which then finally leads to the formation of an engram cell ensemble, an old theory
of memory formation and retrieval that still has value today in neuroscience (Josselyn and
Tonegawa, 2020). Any percept, or emotional memory formation, is represented by a specific
group of engram cells (or memory associative cells). i.e., a special cell ensemble. Emotional
associate memories have been shown to be processed through such ensembles or engrams of
specific groups of neurons (Bocchio et al., 2017). Retrieval of memories involves cues, external
sensory (e.g., in our experiment, musical tones) or internally generated stimuli (e.g., in our ex-
periment, associate emotions to music listening), and reawakening specific neuronal engrams
(Frankland et al., 2019). The associated engram cells or memory associative cells in this special
group are distributed over broad cortical and subcortical areas rather than in a special brain
region, (Josselyn et al., 2015) making it possible to capture such functional brain states using in
vivo approaches of functional MRI. Supporting this, Richiardi and colleagues (Richiardi et al.,
2015) showed a correlation of functional resting-state dynamics and synaptic gene expression,
while Canals and colleagues (Canals et al., 2009) showed recruitment of neocortical and limbic
circuits after hippocampal changes in synaptic strengths. Activity in engram cells is persistent
and it is still observed during subsequent sleep or wakeful rest. Resting-state fMRI may be
used to observe the re-occurrence of neural activity patterns between engram cells, produced
by previous experience. For instance, Hamano and colleagues recently studied the motor
engram as a dynamic change of the cortical network during learning as assessed by fMRI
(Hamano et al., 2020).

Thus, experience leads to traces in neuronal plasticity, an engram (Josselyn et al., 2015), as
well as in psychological traces (Ansermet and Magistretti, 2019; Escobar et al., 2017). Early
music intervention during the first weeks of life may leave both psychic and neuronal traces
in PM infants. However, if the modulation of subsequent RS-FC observed here is the reflection
of traces left by music exposure (training) during hospitalization, intervention dose effects
should be observed.

Dose effect of prior music listening on the functional connectivity

To further study the brain traces of the previous music exposure, we used Partial Least Squares
Correlation (PLSC), a well-known method for the investigation of multivariate relationships
between outcome measures and brain imaging data (Krishnan et al., 2011; McIntosh and
Lobaugh, 2004).
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Based on the revealed multivariate relationships, we observed a significant positive correlation
of the occurrence of the prior music intervention during hospitalization (i.e., the frequency of
the intervention - the dosage), with the delta nodal strength of run 2 vs run1 of left amygdala,
right putamen and left temporal gyrus. This means that following the presentation of the
musical stimuli, the higher the intervention occurrence (during the NICU stay) is, the higher
the delta change in RS-FC (delta nodal strength: run 2 - run1) in these brain regions. These
results are in line with previously reported results where we showed that music listening during
NICU hospitalization improves music processing in preterm newborns (Lordier* et al., 2018),
observing an increased functional connectivity in preterm infants that underwent an early
musical intervention between the auditory cortex and brain regions involved in music features
processing (caudate, putamen, superior temporal gyrus), as well as in musical expertise (supe-
rior temporal gyrus and middle cingulate cortex). Furthermore, the amygdala and temporal
cortices have been characterized as the brain correlates of music-evoked emotions (Koelsch,
2014). Thus, the present results suggest that in PM infants, a higher dose of prior music
listening correlates positively with an increase in RS-FC between brain regions implicated in
multisensory and emotion processing (following the musical stimulus). Along this line, an
increased intervention frequency during hospitalization (dose of musical training) may have
reinforced the effects of music listening both in terms of expertise in music features processing
and in terms of forming associative memories including emotions. During hospitalization,
the music intervention was put immediately before or after interaction with their parents or
nurses, accompanying meaningful emotional events. So, the music intervention left neuronal
traces in the preterm infants’ brain, and listening again to this familiar music reactivated en-
gram cells, leading to a modulation of functional connectivity we observed during subsequent
rest.

On the other hand, we also observed a negative correlation between the occurrence of the
prior musical intervention (dose) and the delta nodal strength (run 2 - run1) in right medial
frontal, left inferior frontal (triangular part), right superior frontal, left superior frontal (me-
dial orbital), right posterior cingulate gyrus, right hippocampus, right parahippocampal, left
inferior occipital, right fusiform, left inferior parietal, right inferior parietal, left paracentral
lobule, left thalamus, and right middle temporal. This indicates that the higher the musical
intervention occurrence, the lower the delta RS-FC change (delta nodal strength: run 2 - run1)
in these regions, following the presentation of the musical stimuli. Interestingly, most of these
regions, such as the posterior cingulate cortex, inferior parietal, prefrontal, middle/superior
frontal, hippocampal, and temporal areas are part of the well-known “Default Mode Network”
(DMN) (Koshino et al., 2014). In adults, it has been reported that the DMN shows low intra-
subject variability (Mueller et al., 2013) and tends to remain stable in terms of connectivity
changes. Moreover, the DMN is stable and mainly engaged under internal thought processes,
mind wandering (Mason et al., 2007), and even during receptive music listening (Kay et al.,
2012). DMN is thought to have an important role in the performance of these tasks because
it deactivates during cognitively demanding tasks (Raichle et al., 2001). At rest, the posterior
cingulate cortex shows functional connectivity with both central executive network (CEN)
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and DMN. But during a cognitively demanding task, ventral and dorsal posterior cingulate
functional connectivity are modulated in opposite directions with the dorsal part becoming
more integrated with the DMN and more anticorrelated with CEN (Leech et al., 2011). The
posterior cingulate cortex is hence thought to be implicated in the switching between CEN
and DMN. Along these lines, we assume that this downregulation of the regions of the DMN,
as the occurrence of the prior musical intervention (dosage) increases, is linked to the fact that
music exposure has led to neuronal and psychic traces, and repeatedly listening to this music
may have reactivated cognitive brain processes associated with the retrieval of familiarity,
memory, and emotions. In other words, the more the PM infants listened to the music during
the NICU stay, the more they engage cognitive brain processes and disengage regions of the
DMN.

3.2.5 Conclusion

To the best of our knowledge, this study is the first to assess both the effect of music listening
on the subsequent RS-fc in preterm and full-term newborns and musical memories through
RS-FC modulation. First, we showed that all infants experienced changes in their RS-FC after
music listening, mostly between brain regions implicated in music perception, including
multisensory processing and emotion. Also, we showed that preterm infants who were previ-
ously repeatedly exposed to music increased their RS-FC between brain regions known to be
involved in associative memory and multisensory processing. We assume that modulation of
subsequent RS-FC reflects reactivation of memory associative cells, an ensemble of neurons
with increased synaptic connections due to previous exposure to a repeated, pleasant and
salient piece of music.

The study further indicates a brain correlate of musical memory engrams in preterm infants
that listened to music during the hospital stay with a dose-dependent effect on this modulation.
These last findings confirm and extend our previous results on the preterm infant’s ability to
process, recognize, and activate brain regions associated with memory and familiar music
processing.

Limitations

The main limitation of this study is the small sample size. As a consequence, the statistical
power is limited and the connection-wise comparisons were not corrected for multiplicity.
However, a strict uncorrected p-value threshold was applied in all cases (i.e., p=0.001). To
accompany the p-values, we also estimated the Cohen’s d to quantify the effect size and
complement our findings. P-values are indicative of the presence of an effect, whereas Cohen’s
d informs us about the presence of thus effect. All effect sizes were above 0.8, meaning that
there is a large impact on all reported cases. Furthermore, multiplicity correction on a small
sample size could potentially lead to the absence of some important underlying clinically
relevant effects due to the lack of statistical power. We recognize that this is a weakness of the
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study, however, this is an exploratory analysis and not a confirmatory analysis. Finally, the
reported PLCS results were statistically significant (p<0.05 based on permutation testing).
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4 Predictive utility of brain volumes for
cognitive and behavioural long-term
outcomes

While functional MRI studies provide insightful information on brain activity and function,
volumetric studies are essential for the characterization of brain tissue abnormalities following
preterm birth. Several studies have reported associations between brain volumetric abnor-
malities and long-term adverse outcomes (Peterson et al., 2003; Beauchamp et al., 2008) while
others contradicted these findings (Lee et al., 2016). Moreover, recent reviews (Keunen et al.,
2012; Anderson et al., 2015) concluded that up to date there is limited evidence regarding the
value of neonatal brain volumes in predicting long-term neurodevelopmental outcome. Thus,
a clear consensus about the predictive utility of neuroimaging brain data for the prediction of
long-term neurodevelopmental outcomes has yet to be established.

The first article in this section has been published in the peer-reviewed NeuroImage journal.
The main goal of this publication is to investigate longitudinal brain development between
birth and TEA in a cohort of preterm infants as well as to identify potential predictive biomark-
ers for the long-term outcome. In his study, as a second author, I performed the multivariate
classification modeling of the data as well as produced most of the main figures of the article.
Moreover, I contributed significantly to the writing/editing and review of the article as well
as to its conceptualization. Laura Gui performed the data preprocessing and contributed to
the formal statistical analysis and writing/editing of the article. The remaining authors partic-
ipated in different stages including conceptualization, supervision, review and/or funding
acquisition.

The second article is a preprint aiming to disentangle, for the first time, the association be-
tween brain volumes measured at TEA and behavioural outcomes assessed through parental
questionnaires in the preterm population. Maria Chiara Liverani and Serafeim Loukas are joint
first-authors of the paper having contributed equally to the writing and editing of the article.
Maria Chiara Liverani acquired the data while Serafeim Loukas performed all formal statistical
and multivariate analysis, and produced all visualizations. The remaining authors partici-
pated in different stages including conceptualization, supervision, review and/or funding
acquisition.
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Abstract

Premature birth has been associated with poor neurodevelopmental outcomes. However, the
relation between such outcomes and brain growth in the neonatal period has not yet been
fully elucidated. This study investigates longitudinal brain development between birth and
term-equivalent age (TEA) by quantitative imaging in a cohort of premature infants born
between 26 and 36 weeks gestational age (GA), to provide insight into the relation of brain
growth with later neurodevelopmental outcomes.

Longitudinal T2-weighted magnetic resonance images (MRI) of 84 prematurely born infants
acquired shortly after birth and TEA were automatically segmented into cortical gray matter
(CGM), unmyelinated white matter (UWM), subcortical gray matter (SGM), cerebellum (CB)
and cerebrospinal fluid (CSF). General linear models and correlation analysis were used
to study the relation between brain volumes and their growth, and perinatal variables. To
investigate the ability of the brain volumes to predict children’s neurodevelopmental outcome
at 18–24 months and at 5 years of age, a linear discriminant analysis classifier was tested and
several general linear models were fitted and compared by statistical tests.

From birth to TEA, relative volumes of CGM, CB and CSF with respect to total intracranial
volume increased, while relative volumes of UWM and SGM decreased. The fastest growing
tissues between birth and TEA were found to be the CB and the CGM. Lower GA at birth was
associated with lower growth rates of CGM, CB and total tissue. Among perinatal factors,
persistent ductus arteriosus was associated with lower SGM, CB and IC growth rates, while
sepsis was associated with lower CSF and intracranial volume growth rates.

Model comparisons showed that brain tissue volumes at birth and at TEA contributed to the
prediction of motor outcomes at 18–24 months, while volumes at TEA and volume growth
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rates contributed to the prediction of cognitive scores at 5 years of age. The family socio-
economic status (SES) was not correlated with brain volumes at birth or at TEA, but was
strongly associated with the cognitive outcomes at 18–24 months and 5 years of age. This study
provides information about brain growth between birth and TEA in premature children with
no focal brain lesions, and investigates their association with subsequent neurodevelopmental
outcome. Parental SES was found to be a major determinant of neurodevelopmental outcome,
unrelated to brain growth. However, further research is necessary in order to fully explain the
variability of neurodevelopmental outcomes in this population.

Keywords: Preterm infants, Neurodevelopmental outcome, Machine learning, Classification,
Volumetric brain data, MRI

Abbreviations

TEA term-equivalent age

MRI magnetic resonance imaging

CSF cerebrospinal fluid

UWM inmyelinated white matter

CGM cortical gray matter

SGM subcortical gray matter

IC intracranial

MDI mental developmental index

PDI psychomotor developmental index

MPC mental processing index

SES socioeconomic status

LDA Linear Discriminant Analysis

GLMs General Linear Models

4.1.1 Introduction

The last trimester of pregnancy is the stage of major brain growth and development (Volpe,
2008). Prematurely born children spend a part of this crucial period outside the womb, making
them vulnerable to a multitude of risk factors susceptible to perturb their brain growth and
development, and affect their motor and cognitive outcomes. Indeed, preterm (PT) birth has
been associated with adverse neurodevelopmental outcomes, such as motor impairment,
cognitive and language difficulties, and behavioural or attention problems (Larroque, 2004;
Aarnoudse-Moens et al., 2009; Moore et al., 2012). Such adverse outcomes can occur even
in the absence of significant brain lesions and can be related to subtle alterations in brain
development (Wood, 2005; Ment et al., 2009). For some PT children, these difficulties may
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persist throughout childhood and adolescence and therefore have a significant impact on
their school achievements and quality of life (Aarnoudse-Moens et al., 2009; Mulder et al.,
2009; Lindstrom et al., 2011; Jaekel et al., 2013; Wilson-Ching et al., 2013). In addition, these
morbidities have important public health and economic implications. A key responsible for
such poor outcomes seems to be a combination of antenatal conditions leading to PT birth,
postnatal brain injury and impaired brain maturation (Ment et al., 2009; Volpe, 2009; Xiong
et al., 2012). In order to better understand and prevent these impairments, neonatologists
need tools to help them identify the most vulnerable PT infants, and better prognosticate
neurodevelopmental outcomes.

Recent advances in magnetic resonance imaging (MRI) have allowed the acquisition of good
quality images of the newborn brain, which, together with the emergence of adequate post-
processing tools, has allowed the extraction of global and regional tissue brain volumes.
In turn, this has prompted research into the possible contribution of such information to
understanding the relationship between impairments in brain development and the poor
outcomes associated with prematurity. Several studies have shown that, in comparison with
their term-born peers, PT born infants have altered brain tissue volumes at term-equivalent
age (TEA) (Peterson et al., 2003; Inder, 2005; Mewes et al., 2006; Thompson et al., 2007;
Keunen et al., 2012; Padilla et al., 2015) and also in childhood and adolescence (Peterson,
2000; de KIEVIET et al., 2012). Additionally, several authors reported associations between
neurodevelopmental outcomes and global and regional tissue volumes at TEA (Peterson
et al., 2003; Inder, 2005; Woodward et al., 2005; Beauchamp et al., 2008; Lodygensky et al.,
2008; Thompson et al., 2008; Van Kooij et al., 2012; Keunen et al., 2016; Monson et al., 2016).
However, others did not find evidence of such associations, or found that the associations
were weakened or not significant after adjustment for perinatal variables (Shah et al., 2006;
Lind et al., 2010; Cheong et al., 2016; Lee et al., 2016). To improve our understanding of the
brain maturation after PT birth, some authors performed longitudinal studies of volumetric
brain tissue growth between birth and TEA (Mewes et al., 2006; Kersbergen et al., 2016a,b;
Makropoulos et al., 2016), but only few investigated possible relationships between neonatal
brain volumes and later neurodevelopmental outcomes (Kapellou et al., 2006; Rathbone et al.,
2011; Kersbergen et al., 2016a,b; Lee et al., 2016; Moeskops et al., 2017). Furthermore, studies
looking at associations between neonatal brain volumes and outcomes beyond 24 months of
age are scarce (Thompson et al., 2008; Lind et al., 2010; Keunen et al., 2016; Lee et al., 2016;
Monson et al., 2016). Therefore, recent reviews (Keunen et al., 2012; Anderson et al., 2015)
concluded that up to date there is limited evidence regarding the value of neonatal brain
volumetric information in predicting neurodevelopmental outcome in childhood.

In order to provide early prediction of neurodevelopmental outcome, it is crucial to be able to
identify early perinatal markers of neurodevelopmental outcomes. In this context, the first
objective of this study was to investigate longitudinal brain development between birth and
TEA in a cohort of relatively healthy PT infants. Additionally, we also investigated whether
brain asymmetries are already present at birth or at TEA. The second objective of this study
was to investigate the ability of brain volumetric data to predict cognitive/motor outcomes at
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18-24 months of corrected age and at 5 years of age.

4.1.2 Methods

4.1.2.1 Participants

The participants to our study were infants born PT before 36 weeks gestational age (GA) at the
University Hospitals of Geneva between 2000 and 2011, who had undergone two MRI exams
– one as soon as possible after birth and one at TEA. Exclusion criteria were the presence of
congenital or chromosomal abnormalities, or major brain pathology such as intraventricular
hemorrhage (grade 3 or higher) and/or parenchymal hemorrhagic infarction on early cerebral
ultrasound. Infants who developed major lesions on MRI at TEA were also excluded from the
study. Out of 125 infants who had two MRI scans, 41 were excluded because they did not fulfill
inclusion criteria, or because image quality in one or both scans was not sufficient to enable
automatic tissue segmentation. The remaining 84 infants born between 25 and 36 weeks GA
(mean ± SD: 30.15 ± 2.5 weeks) were included in the study.

Perinatal data known from the literature to be associated with neurodevelopmental outcome
was taken from the infants’ medical records. GA was based on the last menstrual period or pre-
natal ultrasound. Birth weight z-scores were calculated based on the growth curves by (Voigt
et al., 2006). Persistent ductus arteriosus (PDA) was defined as a ductus arteriosus requiring
medical or surgical closure. Birth asphyxia was diagnosed based on an Apgar score less than 6
at 5 minutes after birth, and umbilical cord blood pH less than 7.0. Presence of proven sepsis
was defined as at least one positive blood culture during the hospital stay. Bronchopulmonary
dysplasia (BPD) was defined as a need for supplemental oxygen or ventilatory support at 36
weeks postmenstrual age (Jobe and Bancalari, 2001).

Parental socioeconomic status (SES) was rated according to (Largo et al., 1989), based on
recorded mother’s education and father’s occupation. The scores are distributed from 2 to 12,
with 2 indicating higher SES.

4.1.2.2 MRI acquisition and processing

A first MRI examination of all PT infants was performed as soon as possible after birth (GA
at scan = 31.78 ± 2.55 weeks, range: 26.6 to 36.1 weeks) and a second longitudinal scan was
acquired at TEA (GA at scan = 40.35 ± 1.03 weeks, range: 38.4 to 44.4 weeks). Both scans
were acquired without sedation, during infants’ natural sleep. Infants were positioned inside
the scanner wrapped in a vacuum pillow and monitored with electrocardiography and pulse
oximetry. Earmuffs were used for noise attenuation. The scans were performed on four
different machines because of scanner upgrades throughout the study period: Philips Eclipse
(1.5T), Philips Achieva (1.5T), Siemens Avanto (1.5T), and Siemens Trio Tim (3T). Adequate
signal-to-noise ratio (SNR) and absence of geometric distortions were verified on each scanner
using regular phantom-based quality control programs provided by the vendors. To obtain
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comparable images, scanning protocols were harmonized among the machines during the
study period. Since infant cortex can be as thin as 1-2 mm in some areas, we used the smallest
slice thickness possible in order to capture and allow the segmentation of such fine anatomical
details (1.5 mm for the older scanners, and 1.2 mm for the more recent scanners). In-plane
resolution was set so as to obtain similar voxel volumes, and thus similar SNR among scanners,
namely to 0.7 mm x 0.7 mm on the older scanners, and 0.8 mm x 0.8 mm on the more recent
scanners, yielding voxel volumes of 0.735 mm3, and 0.768 mm3 respectively. To obtain similar
contrast on all scanners, the values of echo times, repetition times, and echo train lengths
were chosen to be as close as possible among scanners. Acquisition parameters and number
of infants scanned on each of the MRI scanners are presented in the Appendix B, Table B.1.

All scans were automatically segmented into cortical gray matter (CGM), unmyelinated white
matter (UWM), subcortical gray matter (SGM), cerebellum (CB), brainstem, and cerebrospinal
fluid (CSF) with the method of Gui et al. (2012) which is a segmentation pipeline based
on mathematical morphology. The SGM segmentation step of the method was modified
by employing a multi-atlas label fusion method (Heckemann et al., 2006) which provided
more accurate segmentation. The atlases consisted of SGM segmentations obtained with the
original method of (Gui et al., 2012) and manually corrected where necessary. A total of 20
atlases were used (10 for each MRI examination), and they were chosen to represent all scanner
types from the study. All segmentations were visually inspected and small manual corrections
were applied where necessary (Figure 4.1). The automatic phase of the segmentation took
about 90 minutes on an iMac computer (3.4 GHz Intel Core i7, 32 GB RAM) and the manual
corrections required an average of 15 minutes per exam. This allowed the automatic extraction
of global and hemispheric tissue volumes. The volume of the brainstem was not considered for
statistical analysis since imaged brainstem length varied among scans because of differences
in image plane positioning. The volume growth rate (GR) between the birth and TEA scans
was calculated as the ratio of the volume difference and the age difference between the two
scans. Total brain tissue volume was computed as the sum of all brain tissue volumes, and
total intracranial (IC) brain volume was computed as the sum between the total brain tissue
volume and the volume of CSF.

4.1.2.3 Neurodevelopmental outcome data

Children underwent structured neurological and developmental assessments at 18-24 months
of age (corrected for the prematurity) and at 5 years of age. The standardized neurological ex-
amination was completed by a developmental pediatrician and the developmental assessment
was performed by a developmental psychologist, both blinded to children’s clinical details as
well as possible in a clinical situation. All children had normal neurologic examinations at both
time points. Developmental outcomes at 18-24 months were the mental and psychomotor
developmental indices (MDI and PDI, respectively) of the Bayley Scales of Infant Development
II (Bayley, 1993). Cognitive outcome at 5 years of age was assessed with the French version of
the Kaufman Assessment Battery for Children (K-ABC) (Kaufman and Kaufman, 1983), yield-

74



4.1. Journal Article: Longitudinal study of neonatal brain tissue volumes in preterm
infants and their ability to predict neurodevelopmental outcome

Figure 4.1 – Automatic segmentation of longitudinal T2-weighted images acquired at birth
and TEA of three infants, each corresponding to one line. Gestational ages at acquisition were
30 4/7 GW and 41 3/7 GW for the first infant (a, c), 33 5/7 GW and 39 5/7 GW for the second
infant (e, g), and 32 6/7 GW and 40 6/7 GW for the third infant (i, k). Image acquisition was
performed on the following scanners: Siemens Avanto (a), Siemens Trio (c), Philips Eclipse
(e, g), Philips Achieva (i, k). Segmented tissues: CGM (gray), UWM (red), SGM (white), CB
(yellow), brainstem (green), and CSF (blue).

ing a cognitive score, the mental processing composite (MPC), comparable to the one found
in general intelligence tests. All these scores have an expected mean of 100 and a standard
deviation (SD) of 15. Thus, at 18-24 months of age, delayed mental development was defined
as a MDI score < 85, and delayed motor development was defined as a PDI score < 85. Normal
development was defined as a MDI/PDI score ∏ 85. At 5 years of age, low cognitive outcome
was defined as an MPC score < 85, and good cognitive outcome was defined as an MPC score
∏ 85. Mental/motor outcome at 18-24 months of age was assessed in 74 out of the 84 children
(88.1%) included in the study (5 children moved, 3 refused and 2 were unable to be tracked),
whereas cognitive outcome at 5 years of age was available for 56 out of the 84 children (66.7%)
included in the study (4 children moved, 7 refused to come back for the follow up, 1 was ill the
day of the assessment and 6 were unable to be tracked).

Data collection and evaluation for this study were approved by the Ethics Committee of the
Geneva University Hospitals and written consent was obtained from all participating families.
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4.1.2.4 Statistical analysis

Differences between the children included and excluded from the study, as well as between
the children who had and those who did not have a cognitive assessment at 5 years of age were
evaluated using Student t-tests for continuous variables, and chi-square tests or Fisher exact
tests, as appropriate, for categorical variables. Analysis of covariance revealed no significant
effects of scanner type on tissue volumes controlled for GA at birth (Appendix B, Table B.2);
therefore, scanner type was not included as a covariate in the following analyzes. Moreover,
since correlation analysis showed that none of the volumes or volumes GR was significantly
correlated with the SES, we did not adjust the volumetric analyses for SES.

Correlation analysis was used to investigate associations between GA at birth and tissue
volumes (absolute and relative to the total intracranial volume) at birth and at TEA, as well as
between absolute tissue volumes at birth and at TEA. Correlations of tissue volumes at birth
with GA at birth were adjusted for gender, while correlations of tissue volumes at TEA with GA
at birth were adjusted for gender and GA at the TEA MRI. Correlations between tissue volumes
at birth and at TEA were adjusted for gender, GA at birth and GA at the TEA MRI.

Since factors such as asphyxia, BPD, sepsis and PDA are expected to have an impact on brain
development, we evaluated their associations with tissues GR. Thus, multiple general linear
models (GLMs) were used to study the associations between tissue volumes GR and the
presence of asphyxia, BPD, sepsis and PDA, adjusting for gender and GA at birth, according
to the following equation: Volume GR=Asphyxia+BPD+Sepsis+PDA+Gender+GA birth. Inter-
hemispheric asymmetries of CGM, UWM, SGM and CB were assessed at birth and at TEA
using paired t-tests.

Furthermore, we investigated the predictive ability of brain volumetric data for the identifica-
tion of infants with normal or low mental/motor outcome at 18-24 months and normal or low
cognitive outcome at 5 years of age, using Linear Discriminant Analysis (LDA) (implemented
via R software). In order to build a classifier for the two groups, the brain volumes at birth
and at TEA were normalized by birth weight. Then, LDA was applied on the normalized
longitudinal volumetric data (CGM, UWM, SGM, CSF, CB, total IC and total brain tissue vol-
ume) to classify children into two classes: those with scores < 85 and those with scores ∏ 85.
Classifications were performed using the following sets of features: (i) volumetric data at birth,
(ii) volumetric data at TEA, (iii) volumetric data at birth and TEA, and (iv) brain volume GR. All
cases were considered with and without the addition of GA at birth and SES as features. Leave-
one-out cross-validation (LOOCV) was considered in order to avoid overfitting issues. The
prediction power of classifiers was assessed by receiver operating characteristic (ROC) curves
and evaluated by the area under the curve (AUC) of ROC curves. The same procedure was
repeated using different normalization schemes (normalization by brain volume or without
normalization).

In order to better understand the ability of brain tissue volumes (at birth or TEA), or GR to
predict the developmental outcomes at 18-24 months or 5 years of age, we compared (via
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Table 4.1 – Comparison between children included and excluded from the study. Group
characteristics were compared using independent sample t-tests for continuous variables,
and chi-square or Fisher’s exact test for categorical variables, as appropriate.

Variables Children included in the study Children excluded from the study P-value *

Perinatal data N = 84 N = 41
Male gender, No. (%) 38 (45.2) 22 (53.7) 0.783
GA, weeks, mean (± SD), range 30.16 (2.56), [25.57, 35.57] 31.02 (2.82), [24.71, 36.57] 0.092
Birth Weight, g, mean (± SD) 1305.77 (405.45), [510, 2730] 1422.56 (485.42), [580, 2680] 0.159
BW z-score, mean (± SD), range -0.37 (1.13), [-3.06, 2.06] -0.57 (1.01) [-2.11, 2.38] 0.346
Birth height, cm, mean (± SD), range 38.83 (3.34), [29, 47.5] 39.59 (4.36), [31, 48] 0.301
Birth head circumference, cm, mean (± SD), range 26.93 (2.57), [21.5, 33.6] 27.34 (3.03), [20.5, 32.5] 0.431
Asphyxia, No. (%) 9 (10.7) 5 (12.2) 0.061
BPD, No. (%) 14 (16.7) 9 (22) 0.512
Sepsis, No. (%) 14 (16.7) 1 (2.4) 0.021
PDA, No. (%) 16 (19) 7 (17.1) 0.072
Mental/motor development at 18-24 months N = 74 N = 34
MDI, mean (± SD), range 92.22 (14.88), [50, 119] 87.09 (14.93), [57, 128] 0.100
MDI <85, No. (%) 20 (27) 11 (32.4) 0.570
PDI, mean (± SD), range 85.61 (14.80), [50, 121] 81.68 (18.64), [50, 113] 0.284
PDI <85, No. (%) 27 (36.5) 14 (41.2) 0.641
Cognitive outcome at 5 years N = 56 N = 26
MPC, mean (± SD), range 100.07 (15.38), [50, 133] 98.11 (15.66), [64, 126] 0.585
MPC <85, No. (%) 6 (10.7) 3 (10.7) 1.000
Parental socioeconomic status
SES, mean (± SD), range 5.88 (3.23), [2, 12] 5.85 (2.8), [2, 11] 0.961

F-tests) adjusted R2 values of different GLMs of the outcomes with either gender, GA at birth,
and SES as independent variables or with models obtained by adding volumes (at birth and
TEA) and tissue GR. The R2, which indicates the variance explained by a model increases as
long as we add more variables in the model and hence, it is not a good indicator of a better
model. However, the adjusted R2 takes into account the number of variables in the model and
favors ease of interpretability. We therefore used this indicator to compare different models.

Statistical analysis was performed with SPSS Statistics and R software. A two-tailed p-value ∑
0.05 was considered significant for all analyses.

4.1.3 Results

4.1.3.1 Cohort characteristics

GA at birth, birth weight, birth weight z-score and parental SES were similar between the 84
infants included in the study and the 41 infants not included in the study (Table 4.1). Moreover,
there were no significant differences in gender distribution, rates of BPD, asphyxia and PDA
between the two groups. The incidence of sepsis was significantly higher in infants included
in the study compared to the infants excluded from the study (16.7% versus 2.4%, p-value =
0.021). No significant differences between neurodevelopmental outcomes at 18-24 months
corrected age and 5 years of age were found between groups.

Among children included in the study, there were no significant differences in perinatal
characteristics, nor in mental/motor development at 18-24 months, between children who
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Table 4.2 – Comparison between children who had and those who did not have cognitive
assessment at 5 years of age. Group characteristics were compared using independent sample
t-tests for continuous variables, and chi-square or Fisher’s exact test for categorical variables,
as appropriate.

Variables
Children assessed
at 5 years
N = 56

Children not assessed
at 5 years
N = 28

P-value*

Perinatal data
Male gender, No. (%) 24 (42.9) 14 (50) 0.535
GA, weeks, mean (± SD) 30.18 (2.60) 30.11 (2.5) 0.905
Birth Weight, g, mean (± SD) 1282.95 (432.98) 1351.43 (346.73) 0.469
BW z-score, mean (± SD) -0.45 (1.16) -0.23 (1.09) 0.401
Birth height, cm, mean (± SD) 38.61 (3.63) 39.29 (2.64) 0.392
Birth head circumference, cm, mean (± SD) 26.9 (2.66) 26.97 (2.41) 0.912
Asphyxia, No. (%) 6 (10.7) 3 (10.7) 1.000
BPD, No. (%) 9 (16.1) 5 (17.9) 1.000
Sepsis, No. (%) 7 (12.5) 7 (25) 0.213
PDA, No. (%) 10 (17.9) 6 (21.4) 0.694
Mental/motor development at 18-24 months
MDI, mean (± SD) 92.66 (15.89) 90.95 (11.79) 0.669
PDI, mean (± SD) 86.1 (15.01) 84.21 (14.51) 0.636
Parental socioeconomic status
SES, mean (± SD) 5.93 (3.17) 5.75 (3.46) 0.835

had and those who did not have a cognitive assessment at 5 years of age (Table 4.2).
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4.1.3.2 Brain development between birth and TEA

Absolute and relative tissue volumes

Figure 4.2 illustrates infant’s absolute and relative tissue volumes at birth and TEA. Absolute
volumes of all tissue classes increase between the two scans. While the relative volumes of
CGM, CB and CSF increase from birth to TEA, we observe a reduction of the relative volumes
of UWM (which was found to be the most prominent brain tissue at birth) and of SGM from
birth to TEA.

Figure 4.2 – Absolute and relative cerebral tissue volumes measured at birth and at TEA
(expressed as medians with 25/75 centile box, 10th/90th centile error bars, and outliers).

Absolute tissue volumes at birth adjusted for gender showed a significant positive association
of all brain tissues with GA at birth (Table 4.3). The repetition of the analysis using relative
tissue volumes at birth (in percentages of IC volumes at birth) showed that only CGM and CB
volumes at birth were significantly positively associated with GA at birth, while relative UWM
at birth was significantly negatively associated with GA at birth. Associations with GA at birth
were no longer significant for relative SGM, CSF and total tissue volumes.

Correlations between GA at birth and absolute volumes at TEA adjusted for gender and GA at
2nd MRI showed that only CSF volumes were significantly negatively correlated with GA at
birth (Table 4.3). The repetition of the analysis using relative tissue volumes (in percentages of
IC volumes) at TEA showed positive correlations of relative volumes of UWM and total tissue
with GA at birth, and negative correlations of relative CSF volumes with GA at birth. There was
no significant correlation between the relative volumes of CGM, SGM and CB and GA at birth.
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Table 4.3 – Correlations between GA at birth and absolute/relative tissue volumes at birth on
one hand and between GA and absolute/relative tissue volumes at TEA on the other hand.

Tissue type
Birth TEA
Absolute volume Relative volume Absolute volume Relative volume
r P-value1 r P-value1 r P-value2 r P-value2

CGM .884 <.001 .765 <.001 -.041 .718 .037 .738
UWM .796 <.001 -.678 <.001 .103 .356 .322 .003
SGM .845 <.001 .058 .601 -.008 .940 .089 .424
CB .863 <.001 .730 <.001 -.002 .984 .045 .688
CSF .543 <.001 -.075 .500 -.235 .034 -.277 .012
Total tissue .855 <.001 .075 .500 .026 .816 .277 .012
IC .825 <.001 -.066 .558

1 Correlations between absolute and relative tissue volumes at birth and GA at birth were
adjusted for gender.

2 Correlations between absolute and relative tissue volumes at TEA and GA at birth were
adjusted for gender and for GA at 2nd MRI.

Moreover, our cohort presented moderate to strong positive correlations between absolute
tissue volumes at birth and absolute tissue volumes at TEA, adjusted for gender, GA at birth
and GA at the 2nd MRI: CGM: r .526, p<.001; UWM: r .707, p<.001; SGM: r .452, p<.001; CB: r
.629, p<.001; CSF: r .489, p<.001; total tissue: r .662, p<.001; IC: r .655, p<.001).

Tissue volume GR

Table 4.4 presents average absolute tissue GR, and tissue GR relative to birth volumes, the
latter allowing the comparison of growth rates among tissues. We observe that the fastest
growing tissues are the CB (22 ± 7 % of its birth volume / week) and the CGM (21 ± 5 % of its
birth volume / week), followed by the CSF (17 ± 9 % of its birth volume / week).

Table 4.4 – Averages of tissue absolute and relative GRs.

Variable
Tissue type

CGM UWM SGM CB CSF Total tissue IC

Absolute GR,
mean (SD, ml / week)1 11.94 (2.1) 6.51 (1.3) 1.05 (0.2) 1.76 (0.3) 5.77 (1.9) 21.44 (3) 27.22 (3.7)
Relative GR,
mean (SD, % / week)2 21 (5) 7 (2) 9 (3) 22 (7) 17 (9) 12 (3) 13 (3)

1 Tissue absolute growth rates were computed as: (TEA volume – birth volume) / (GA TEA – GA birth).
2 Tissue relative growth rates were computed as: absolute growth rates x 100 / birth volume.

In Figure 4.3 we display individual tissue volume trajectories from birth to TEA in our PT
born children. Line colors indicate relative tissue growth rates, with red lines depicting faster
growth, and blue lines – slower growth.
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Figure 4.3 – Individual volume growth trajectories from birth to TEA: (a) CGM volume; (b) CB
volume; (c) Total tissue volume; (d) Total IC volume. Line colors indicate tissue growth rates
relative to birth volumes (faster and slower growth are represented by red and blue colors,
respectively).

GLM analysis of tissue volume GR showed a significant positive association of CGM, CB, and
total brain tissue GR with GA at birth (Table 4.5). On the other hand, SGM volume GR was
negatively associated with GA at birth. Infants that had suffered from sepsis had significantly
lower CSF (mean difference [MD] 1.55 ml/week, 95% CI, 0.26 – 2.84) and IC GR (MD 3.01
ml/week, 95% CI, 0.64 – 5.39) than infants who did not suffer from sepsis. Neither BPD nor
asphyxia had significant effects on volumes GR. Infants that were suffering from PDA had
significantly lower SGM (MD 0.21 ml/week, 95% CI, 0.07 – 0.35), CB (MD 0.30 ml/week, 95%
CI, 0.13 – 0.47) and IC GR (MD 2.54 ml/week, 95% CI, 0.18 – 4.89) compared to infants who did
not suffer from PDA. Finally, males had significantly higher CB GR (MD 0.21 ml/week, 95% CI,
0.10 – 0.32) than females.

Volume asymmetries

The comparison of tissue volumes between hemispheres (Table 4.6) revealed that at birth,
CGM and SGM volumes were significantly higher in the left hemisphere than in the right
hemisphere (MD 0.42 ml for CGM, 0.06 ml for SGM), while UWM volumes were significantly
lower in the left hemisphere than in the right hemisphere (MD 0.28 ml). At TEA only the UWM
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Table 4.5 – General linear model analysis of tissue volume GR and perinatal factors.

Dependent variables Model R2 B (95% CI) P-value

CGM GR
Gender
GA
BPD
Asphyxia
Sepsis
PDA

.281

-.63 (-1.50, .23)
.33 (.14, .52)
.83 (-.40, 2.06)
-.65 (-1.96, .67)
-1.05 (-2.37, .27
-.82 (-2.12, .49)

.149

.001

.183

.330

.116

.215
UWM GR

Gender
GA
BPD
Asphyxia
Sepsis
PDA

.091

-.18 (-.77, .42)
-.04 (-.17, .09)
.38 (-.46, 1.22)
-.90 (-1.80, .004)
-.49 (-1.49, .41)
-.42 (-1.32, .48)

.553

.573

.374

.051
280
.353

SGM GR
Gender
GA
BPD
Asphyxia
Sepsis
PDA

.202

-.05 (-.14, .05)
-.03 (-.05, -.01)
.087 (-.044, .217)
-.02 (-.16, .12)
.02 (-.12, .16)
-.21 (-.35, -.07)

.338

.005

.191

.769

.804

.004
CSF GR

Gender
GA
BPD
Asphyxia
Sepsis
PDA

.155

-.19 (-1.04, .66)
-.06 (-.24, .13)
.49 (-.72, 1.69)
.91 (-.38, 2.20)
-1.55 (-2.84, -.26)
-.73 (-2.01, .55)

.659

.538

.423

.162

.019

.258

CB GR
Gender GA
BPD
Asphyxia
Sepsis
PDA

.313

-.21 (-.32, -.10)
.04 (.02, .06)
.15 (-.004, .31)
-.01 (-.18, .16)
.07 (-.10, .24)
-.30 (-.47, -.13)

.000

.002

.056

.931

.424

.001
Total tissue GR

Gender
GA
BPD
Asphyxia
Sepsis
PDA

.226

-1.07 (-2.34, .21)
.30 (.01, .58)
1.47 (-.35, 3.28)
-1.58 (-3.51, .36)
-1.47 (-3.41, .48)
-1.81 (-3.73, .12)

.099

.040

.111

.110

.137
065

Total IC GR
Gender
GA
BPD
Asphyxia
Sepsis
PDA

.270

-1.26 (-2.82, .30)
.24 (-.11, .58)
1.95 (-.26, 4.17)
-.66 (-3.03, 1.71)
-3.01 (-5.39, -.64)
-2.54 (-4.89, -.18)

.113

.173

.083

.579

.014

.035
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Table 4.6 – Volume asymmetries. Paired samples t-test.

Tissue volume difference Mean (ml) (95% CI) SD P-value

CGM birth left – CGM birth right .42 (.24, .60) .83 <.001
UWM birth left – UWM birth right -.28 (-.46, -.10) .84 .003
SGM birth left – SGM birth right .06 (.03, .09) .14 <.001
CB birth left – CB birth right -.03 (-.09, .03) .28 .396
CGM TEA left – CGM TEA right .42 (-.24, 1.08) 3.05 .206
UWM TEA left – UWM TEA right -.61 (-1.04, -.18) 2.00 .006
SGM TEA left – SGM TEA right .004 (-.04, .05) .22 .883
CB TEA left – CB TEA right .14 (-.03, .31) .77 .097

asymmetry was maintained, with UWM volumes significantly lower in the left hemisphere
than in the right hemisphere (MD 0.61 ml).

4.1.3.3 Neurodevelopmental outcome in relation with neonatal brain volumes

Neurodevelopmental outcome was assessed in 74 of the 84 PT children (88.1 %) at 18-24
months of corrected age (Table 4.1). At 18-24 months of age, mean mental scores were 92 ± 15
for MDI and 86 ± 15 for PDI. Of these children, 20 (27%) exhibited mental delay (MDI < 85)
and 27 (36%) exhibited motor delay (PDI < 85). At 5 years of age, cognitive development was
assessed in 56 out of 84 children (66.7%). Mean MPC scores were 100 ± 15; 6 children (11%)
had cognitive MPC scores below the normal range.

Classification of neurodevelopmental outcomes

Figure 4.4 presents the ROC curves of the LDA classification of the children into two classes:
those with outcome scores < 85 and those with outcome scores ∏ 85 at 18-24 months and
5 years of age using the four sets of birth weight normalized features, as well as the GA at
birth and the SES. Among the three outcome scores (MDI, PDI and MPC), the classification of
MDI scores at 18-24 months had the highest predictive power evaluated by the AUC (AUC =
0.77 using the birth volumetric data, AUC = 0.73 using TEA volumetric data, AUC = 0.7 using
the combination of birth and TEA data, and AUC = 0.72 using volume GR). However, this
predictive power may be influenced by the inclusion of GA and SES as features, since the
predictive power for GA and SES alone were similar (AUC = 0.78). For the PDI score at 18-24
months, the predictive performance was lower than in the MDI case (AUC = 0.63, 0.64, 0.6
and 0.62 for birth, TEA, birth and TEA, and GR, respectively), however GA and SES seem to
contribute less in this case (AUC = 0.57 for the prediction based solely on GA and SES). Finally,
for predicting the MPC outcome at 5 years of age, the highest AUC was obtained by using only
GA and SES as features (AUC = 0.77), while the addition of volumetric features did not improve
the performance of the classifier (AUC = 0.63, 0.71, 0.64, and 0.76, for birth, TEA, birth and
TEA, and volume GR, respectively). Classification performance was not changed when the
data was not normalized, or normalized by the total IC volume (instead of the birth weight).
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Table 4.7 – General linear model analysis of neurodevelopmental outcomes.

MDI 18-24 months PDI 18-24 months MPC 5 years
Variables B (95% CI) P-value B (95% CI) P-value B (95% CI) P-value

SES -2.15 (-3.11, -1.19) <.001 -.34 (-1.40, .71) .519 -2.07 (-3.31, -.83) .001
GA at birth .72 (-1.97, .52) .251 -1.18 (-2.56, .19) .092 .27 (-1.23, 1.77) .718
Gender 2.96 (-3.44, 9.36) .360 7.74 (.66, 14.83) .033 1.82 (-6.08, 9.73) .646

Lower classification performance was obtained when using only brain volumes as features
(without GA at birth or SES); corresponding ROC curves are shown in the Appendix B, Figure
B.1.

The classification suffers from the small number of subjects in the abnormal group, especially
for the MPC score, with only 6 abnormal scores vs. 50 normal scores. This is one of the
limitations of this study that we will discuss later. Furthermore, the classification may have
suffered from over fitting and low rank issues in some cases. For these reasons, we explored
the ability of volumetric data to predict neurodevelopmental outcomes by using GLMs and
F-tests, whose results are presented in the next section.

Figure 4.4 – Individual volume growth trajectories from birth to TEA: (a) CGM volume; (b) CB
volume; (c) Total tissue volume; (d) Total IC volume. Line colors indicate tissue growth rates
relative to birth volumes (faster and slower growth are represented by red and blue colors,
respectively).

General linear models for the prediction of the neurodevelopmental outcome

The analysis of outcomes by GLM with gender, GA at birth and SES showed that low parental
SES was associated with poorer cognitive development at 18-24 months and 5 years of age,
reflected by lower MDI and MPC scores, but not with motor development (PDI score) at 18-24
months of age (Table 4.7). At that age, males had significantly lower motor scores compared to
females (PDI score: mean ± SD: 82 ± 16 versus 89 ± 13, p .043). GA at birth was not significantly
associated with outcome in our cohort.
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Associations between neurodevelopmental outcome and perinatal factors, tissue volumes and
GR were investigated by comparing (F-test) R2 values of six GLMs. Table 4.8 shows that the
MDI score at 18-24 months is predicted mainly by model 1 (GA, Gender and SES) (adjusted-R2
= 0.22). Adding the perinatal data (model 2) in the analysis does not improve the prediction
of outcomes (p = 0.45, 0.23, 0.57 for MDI, PDI and MPC, respectively). MRI volumetric data
(either at birth, at TEA, both at birth and at TEA, or volume GR) do not contribute to the
prediction power of the MDI score (p = 0.73, 0.43, 0.53, 0.38, respectively). For the PDI score,
model 1 has a lower predictive power (adjusted-R2 = 0.055) compared to MDI outcome. This
lack of predictive power is compensated by the volumetric data, especially at birth (p = 0.0029)
(model 3). The combination of birth volumetric data and TEA volumetric data also contributes
to the predictive power for the motor outcome (adjusted-R2 = 0.25, p = 0.0026) (model 5).
However, volumetric data at TEA only (model 4) seems to contribute more to the predictive
power of the MPC (p=0.037) at 5 years. The best model for predicting the cognitive outcome at
5 years of age is achieved when the volume GR (model 6) is added to model 1 (adjusted-R2 =
0.27, p=0.021). Over all, the models do not have a high predictive power as the adjusted-R2 is
lower than 0.3 in all cases. Finally, the adjusted-R2 cannot be negative in theory, but it can be
in practice, in which case it is an indication of a badly fitted model.
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Table 4.8 – Predictive power and model comparison for MDI, PDI, MPC scores.

Model

Model /Model
comparison

MDI 18-24 month

R2 /R2 adjusted
p value

PDI 18-24 months

R2 /R2 adjusted
p value

MPC 5 years

R2 /R2 adjusted
p value

1 0.2543/0.2209 0.09631/0.05585 0.1899/0.1422
1 + 2
1 + 2/ 1 (2 contribution)

0.319/0.2185
0.4461

0.2032/0.08562
0.2251

.268/0.1216
0.5695

3
1 + 3
1 + 3/ 1 (3 contribution)
1 + 3/ 3 (1 contribution)

0.04103/-0.04888
0.2964/0.1926
0.723
6.083e-05 ***

0.2296/0.1574
0.3187/0.2181
0.002878 **
0.04664 *

0.05961/-0.05794
0.2823/0.1388
0.4464
0.002954 **

4
1 + 4
1 + 4/ 1 (4 contribution)
1 + 4/ 4 (1 contribution)

0.1053/0.02137
0.3208/0.2206
0.4263
0.0002309 ***

0.1473/0.06732
0.2226/0.1079
0.1285
0.116

0.202/0.1023
0.3757/0.2508
0.03721 *
0.005806 **

5
1 + 5
1 + 5/ 1 (5 contribution)
1 + 5/ 5 (1 contribution)

0.1458/-0.03094
0.3789/0.2095
0.526
0.0001251 ***

0.3194/0.1785
0.4167/0.2576
0.002602 **
0.02706 *

0.4444/0.2308
0.2349/0.02142
0.1197
0.001712 **

6
1 + 6
1 + 6/ 1 (6 contribution)
1 + 6/ 6 (1 contribution)

0.06175/-0.02621
0.3252/0.2256
0.3789
2.735e-05 ***

0.09551/0.01071
0.2125/0.09633
0.1735
0.02845 *

0.2107/0.1121
0.3909/0.269
0.02148 *
0.004018 **

1 Gender, GA birth, SES
2 Asphyxia, BPD, Sepsis, PDA
3 Absolute volumes at birth: CGM, UWM, SGM, CB, CSF, Total IC
4 Absolute volumes at TEA: CGM, UWM, SGM, CB, CSF, Total IC
5 Absolute volumes at birth + Absolute volumes at TEA: CGM, UWM, SGM, CB, CSF, Total IC
6 Absolute volumes GR: CGM, UWM, SGM, CB, CSF, Total IC
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4.1.4 Discussion

There are currently only few studies that investigated longitudinal brain tissue volume growth
in PT infants in the neonatal period and its association with later neurodevelopmental out-
comes (Kapellou et al., 2006; Rathbone et al., 2011; Kersbergen et al., 2016a,b; Lee et al., 2016),
and even fewer such studies that considered outcomes beyond 24 months of age (Lee et al.,
2016). This study evaluated longitudinal brain tissue growth between birth and TEA, and
its relation with perinatal factors and neurodevelopmental outcomes at 18-24 months of
corrected age, and at five years of age, in a cohort of PT children free of major brain injury.

Relative volumes of CGM and CB were found to increase with GA at birth, while relative
volumes of UWM decreased with GA at birth. The trend continued in the longitudinal evolution
of the cohort, with higher relative volumes of CGM, CB and CSF at TEA compared to birth,
and lower relative volumes of UWM and SGM at TEA than at birth. Increasing prematurity
at birth was associated with lower relative volumes of UWM and total brain tissue at TEA, as
well as higher absolute and relative volumes of CSF at TEA. Moreover, increasing prematurity
was associated with lower growth rates of CGM, CB and total tissue. Among perinatal factors,
neither BPD nor asphyxia had significant effects on tissue GR; PDA was associated with lower
SGM, CB and IC GR, while sepsis was associated with lower CSF and IC GR. The fastest growing
tissues were found to be the CB and the CGM (22 % of birth volume / week, and 21 % of birth
volume / week, respectively).

An exploratory analysis was performed using LDA for the classification of children’s neurode-
velopmental outcome into normal and abnormal, based on perinatal brain volumes and their
growth. Cognitive outcome at 18-24 months (MDI) and at 5 years of age (MPC) were best
predicted by the LDA based solely on GA and SES, while the addition of volumetric features
did not improve the performance of the classifier. Motor outcome at 18-24 months (PDI) was
best predicted by combining GA and SES with volumetric data measured at birth and at TEA.

To analyze the contributions of either perinatal factors, parental SES and brain volumetric
factors to the prediction of neurodevelopmental outcomes, statistical models comparison
was performed, showing again that cognitive outcome at 18-24 months and 5 years of age is
predicted mainly by GA at birth and SE. Brain volumetric data at birth and at TEA contributed
significantly to the variability of motor outcome at 18-24 months, whereas brain tissue volumes
at TEA and tissue volume GR significantly influenced cognitive outcome at 5 years of age.

Longitudinal brain tissue volumes growth and volumes asymmetry

Several studies performed in PT born infants have demonstrated reductions in brain volumes
at TEA in comparison with their term-born peers, (Peterson et al., 2003; Inder, 2005; Mewes
et al., 2006; Thompson et al., 2007; Keunen et al., 2012; Padilla et al., 2015), but only few
authors performed longitudinal studies of volumetric brain tissue growth between birth and
TEA (Mewes et al., 2006; Kersbergen et al., 2016a,b; Makropoulos et al., 2016). Our data shows
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an effect of GA at birth on all cerebral tissue volumes measured early after birth. Relative
volumes of CGM and CB as percentages of total IC were positively correlated with GA at birth,
while relative UWM at birth was significantly negatively associated with GA at birth. At TEA,
only UWM and relative total brain tissue volume were positively associated with GA at birth,
while relative CSF was negatively correlated with GA at birth. Regarding tissue volume changes
between birth and TEA, we observed an increase of the relative volume of CGM as percentage
of total IC volume and, on the other hand, a decrease in relative volume of UWM, which
is consistent with the cross-sectional study of Hüppi et al. (1998). Moreover, the increase
of relative CGM, CB and CSF volumes, and decrease of relative UWM and SGM volumes
between birth and TEA demonstrated in our cohort confirm the findings of Mewes et al.
(2006); Makropoulos et al. (2016). The increase in relative CSF between birth and TEA revealed
by our study and corroborated by Makropoulos et al. (2016) explains the slight decrease in
relative total brain tissue between birth and TEA indicated by our data. Furthermore, in line
with Dubois et al. (2008) our data revealed moderate to strong correlations between tissue
volumes at TEA and tissue volumes at birth (after adjustment for gender, GA at birth and GA at
2nd MRI), suggesting that structural measurements at birth contribute to explaining brain
development at TEA.

Additionally, tissue volumes GR of CGM, SGM, CB, adjusted for gender, also showed a sig-
nificant positive association with GA at birth. This is in line with other studies that found
that gestational age at birth is a major predictor of cerebral volume growth rates (Inder, 2005)
meaning that the longitudinal brain growth trajectory is influenced by GA at birth. In the
absence of major cerebral lesions, this may suggest delayed or impaired cerebral development,
either due to postnatal factors after PT birth, or as a consequence of the processes leading to
PT birth. Huppi and colleagues (Hüppi et al., 1998) were the first to quantitatively assess in
vivo of early human brain development using 3D-MRI and tissue segmentation techniques.
This cross-sectional study showed a fourfold increase in CGM and a five-fold increase in
myelinated white matter in 78 prematurely born infants from 29 to 41 weeks GA. In line with
these findings, our longitudinal study showed a relatively rapid increase of CGM between birth
and TEA, of 21% per week relative to birth volume (almost 12 ml/week in absolute volume).
UWM, which accounts for nearly 98% of the total WM during this period of brain development,
was shown to increase with 7% per week relative to birth volume (6.5 ml/week in absolute vol-
ume), while CSF volumes were shown to increase with 17% per week relative to birth volume
(5.7 ml/week in absolute volume). SGM, which represents the volume of basal ganglia and
thalamus together, showed a growth rate of 9% per week relative to birth volume (1 ml/week
in absolute volume). In line with other studies (Mewes et al., 2006; Kersbergen et al., 2016a,b),
we found that the CB displayed the fastest growth between birth and TEA of 22% per week
relative to birth volume (1.76 ml/week in absolute volume. Considering the rapid evolution
of brain differentiation in this critical period of development, a neonatal intensive care unit
(NICU) environment might negatively impact the vulnerable PT brain, causing abnormal
development.

When looking at the individual growth trajectories of brain tissue volumes, we observed a
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great inter-individual variability, which reflects the fact that, even in the absence of brain
injury, tissue volume growth from birth to TEA might be influenced by various clinical factors,
such as gender, intrauterine growth restriction, asphyxia, BPD, neonatal sepsis and PDA (Tolsa
et al., 2004; Boardman et al., 2007; Thompson et al., 2007; Keunen et al., 2012; Skiöld et al.,
2014; Bouyssi-Kobar et al., 2016). In our study, the effect of several perinatal risk factors on
brain volumes growth was modest. Males had significantly higher CB GR (MD 0.21 ml/week,
95% CI, 0.10 – 0.32) than females. In this study, sepsis was associated with lower CSF and
IC GR. (Lee et al., 2014) found infants suffering from necrotizing enterocolitis with sepsis
to have reduced trans-cerebellar diameter and increased left ventricles, while Padilla et al.
(2015) did not find significant differences in global or regional brain volumes between infants
with and without sepsis. Differently from the report of Thompson et al. (2007), in our study
BPD had no significant effect on brain tissue volume growth. PDA on the other hand was
associated with lower GR of SGM and CB. Indeed, it has been shown that PDA can affect
perfusion and oxygenation in the premature brain (Lemmers et al., 2016), which might lead
to impaired growth in rapidly growing brain structures. Moreover, PDA has been shown to
be associated with reduced volumes of the CB (Limperopoulos, 2005; Padilla et al., 2015) and
several gray matter areas (Padilla et al., 2015), while others (Kersbergen et al., 2016a,b) reported
that surgery (including PDA-related surgery) was associated with volume reductions in several
brain areas, but not the CB. As also confirmed by our results, the CB has been shown to be one
of the fastest growing tissues in the last trimester of pregnancy (Limperopoulos, 2005; Volpe,
2009; Andescavage et al., 2016; Kersbergen et al., 2016a,b), which could explain its greater
vulnerability to a lack of oxygenation caused by PDA.

Regarding brain asymmetry, we found small but statistically significant inter-hemispheric
differences: CGM and SGM volumes were higher, and UWM lower in the left hemisphere
at birth, while at TEA only the UWM asymmetry was maintained. In a study of the fetal
brain, Andescavage et al. (2016) also reported larger volumes of left hemisphere CGM and
SGM in early gestation, followed by left-right volume equalization by TEA. However, in their
study white matter asymmetries were not significant. Gilmore et al. (2007) studied infants
born at term in the first few weeks after birth, and found left-greater-than-right asymmetries
in the CGM, SGM and UWM, with gray matter asymmetries more pronounced. Thus, our
study confirms the accumulating evidence that brain asymmetry evolves during lifespan, and
that the well-known rightwards asymmetry of the adult brain is not yet present at birth, but
develops later in life.

Relationship to Neurodevelopmental Outcome

Of the 84 children who had 2 MRI scans, 74 children were evaluated for mental and motor
development with the BSID II (MDI and PDI scores respectively) at 18-24 months of corrected
age and 56 children were assessed for cognitive development with the K-ABC (MPC score) at
5 years of age. These follow-up rates with some dropouts are mostly due to high migration
rates in the area. In this cohort of relatively healthy children, with no major cerebral lesions,
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spanning a wide range of GA from extreme to late prematurity, mean MDI, PDI and MPC
scores were all in the normal range.

To study the relationship between brain tissue volumes measured in the neonatal period and
subsequent neurodevelopmental outcome, we first performed an exploratory analysis using
LDA to classify neurodevelopmental outcomes of PT children into normal and abnormal as
defined by standardized tests. Cognitive outcomes (MDI scores) at 18-24 months and at 5
years of age (MPC scores) were predicted with highest AUC by the LDA based solely on GA and
SES (AUC = 0.78 for MDI and AUC = 0.77 for MPC). The addition of tissue volumes at birth,
TEA or tissue GR as features of the classifier did not improve its performance. Motor outcome
(PDI scores) at 18-24 months was predicted with lower AUC values than the cognitive scores
(MDI and MPC), with the highest AUC obtained by combining GA and SES with brain volumes
at TEA (AUC = 0.64). For the prediction of the PDI and MPC scores, the specificity was found
to be very high vs. the sensitivity due to the small number of subjects considered as having
abnormal scores (< 85) was low. Interestingly, the classification performance increased when
using the GA at birth and SES as features when predicting MDI and MPC scores, but not for the
PDI score. This is in line with Moeskops et al. (2017), who also performed classification of PT
children’s neurodevelopmental scores based on brain structural features (including volumes)
and reported that the GA at birth improves their classification performance. Furthermore,
in our study the prediction of PDI and MPC outcomes suffered from the small number of
subjects in the abnormal range, which yielded low prediction ability for these two scores.
This corroborates the results of Moeskops et al. (2017), whose ROC curves indicated that high
specificity was achieved by paying the price of a large false discovery rate, and therefore a
reduced ability to predict abnormal neurodevelopmental outcomes.

In order to better understand and prognosticate neurodevelopmental outcome associated
with preterm birth, we then used a GLM of outcomes including the parent SES, gender and GA
at birth (model 1). The main finding of this simple model was that cognitive scores (MDI and
MPC) at 18-24 months of corrected age and at 5 years old were associated with the SES of the
family, which confirms evidence from the literature. High-risk environments have been shown
to negatively impact the cognitive trajectories of both PT and term born children (Wong and
Edwards, 2013; Bradley and Corwyn, 2002a). Child SES, characterized by parental educational
attainment and parental occupation, has been shown to be strongly associated with global
cognitive development (Farah et al., 2006), but also with language and memory (Fluss et al.,
2009; Jednoróg et al., 2012; Noble et al., 2015), executive functions development (Stevens et al.,
2009) and school achievement. Mangin et al. (2017), who performed a longitudinal analysis
describing cognitive development of very PT children over time, reported that the combination
of PT birth and family high social risk is particularly detrimental, resulting in PT children to
have the poorest developmental trajectory from early age to 12 years. There are also several
recent studies looking at brain structural relations with SES in childhood. Jednoróg et al.
(2012) examined the influence of the family SES on brain anatomy through MRI in a group of
10-year-old children. They found that unfavorable environmental conditions were associated
with smaller hippocampal volume and with smaller volumes of CGM in regions related to
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language and executive function development. Recent data from the large “Pediatric Imaging,
Neurocognition and Genetics” (PING) study has confirmed the effect of SES on childhood
cortical thickness changes, which in turn are associated with cognitive performance (Piccolo
et al., 2016). Our analyses in the newborn period did not yield any association between tissue
volumes measured at birth or at TEA and parental SES. These results suggest that the effects of
SES are related to environmental factors postnatally, rather than genetically influenced and
present at birth.

Furthermore, we investigated whether the addition to this model of perinatal factors, brain
tissue volumes or growth rates significantly increases the R2 of the model. A variety of neonatal
risk factors have been associated with adverse outcome in PT children, such as BPD (Short
et al., 2003; Anderson and Doyle, 2006), PDA (Bourgoin et al., 2016) and sepsis (Miller et al.,
2005a; Lee et al., 2014). Although in the literature alterations in brain tissue volumes and
several perinatal morbidities associated with preterm birth seem to be related to later neu-
rodevelopmental impairments, in this study perinatal risk factors such as asphyxia, sepsis,
BPD and PDA do not consistently improve the prediction of outcomes until 5 years of age.

Concerning possible associations between reduced neonatal brain volumes and unfavorable
neurodevelopmental outcomes, the evidence in the literature is mixed, with several authors re-
porting such associations (Peterson et al., 2003; Inder, 2005; Woodward et al., 2005; Beauchamp
et al., 2008; Lodygensky et al., 2008; Thompson et al., 2008; Van Kooij et al., 2012; Keunen
et al., 2016; Monson et al., 2016), and a few reporting the lack of significant associations, or a
weakening of such associations after adjustment for perinatal variables (Shah et al., 2006; Lind
et al., 2010, 2011; Cheong et al., 2016; Lee et al., 2016). In our subset of preterm born children
with no brain lesions, adding the MRI volumetric data (either at birth, at TEA, both at birth and
at TEA, or volume GR) does not contribute to the prediction power for the mental outcome
at 18-24 months of corrected age. However, model 1 has a lower predictive power for the
motor outcome at 18-24 months, compared to mental outcome. This lack of predictive power
is compensated by adding tissue volumes segmented at birth. The prediction of the motor
outcomes is further improved by using the combination of brain volumes measured at birth
and TEA. At 5 years of age, volumetric measurements at TEA contributed to the predictive
power of the cognitive outcome. The best model was achieved by adding volumes GR to model
1. These results suggest that the volumetric assessments at birth and TEA contribute to the
prediction of outcomes, but their relevance is limited, as the adjusted-R2 is lower than 0.3.
However, this lack of evidence needs to be carefully considered in the light of its possible
explanations. First of all, our cohort was a relatively healthy one, exhibiting no major brain
injury, spanning a wide range of gestational ages from extreme to late prematurity, and with
few children whose outcomes indicated neurodevelopmental delay. The cohorts investigated
in most studies reporting significant associations between neonatal tissue volumes and later
outcomes had lower mean GA-s than our cohort, and several included cases of moderate to
severe brain injury, factor not always adjusted for in statistical tests (Inder, 2005; Woodward
et al., 2005; Beauchamp et al., 2008; Thompson et al., 2008; Van Kooij et al., 2012; Keunen et al.,
2016; Monson et al., 2016). The other differences to be mentioned between our study and the
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others were related to MRI parameters, volume extraction methodologies or the use of more
specific neuropsychological assessment tools for outcome evaluation. Limitations

A few limitations of this study need to be mentioned. First, the MRI scans were performed on
four different scanners because of scanner upgrades throughout the study period. Despite
the fact that protocols were harmonized in order to obtain similar quality images, subtle
differences might subsist among images acquired on different machines, and these might be
reflected in the positioning of segmentation boundaries, and thus also in the final extracted
tissue volumes. In order to mitigate this limitation, systematic visual inspection and manual
correction of visible segmentation errors was performed. Moreover, analysis of covariance
showed no effect of scanner type on brain tissue volumes corrected for GA at birth.

Secondly, we evaluated global tissue volumes, while several other studies looked at finer
divisions of the brain, by performing parcellations (Peterson et al., 2003; Woodward et al., 2005),
or studying specific structures, such as the hippocampus (Isaacs et al., 2000; Beauchamp et al.,
2008; Lodygensky et al., 2008; Thompson et al., 2008). Indeed, we speculate that segmentations
into finer anatomical divisions might improve our understanding of associations between
early brain structure and later outcomes, and envisage performing such segmentations in
our future work. In the same line of thought, it seems that investigations of brain cortical
surface and folding (Kapellou et al., 2006; Dubois et al., 2008; Rathbone et al., 2011; Kersbergen
et al., 2016a,b), structural connectivity (Thompson et al., 2016), and functional connectivity
(Rogers et al., 2017)constitute promising investigation paths for the detection of MRI neonatal
biomarkers associated with future outcomes.

Thirdly, dropout rates of our cohort were quite high, especially for the 5 years examination,
where only 56 out of 84 children (66.7%) could be evaluated, thus limiting the power available
for statistical testing. Furthermore, the groups where unbalanced for the LDA classifica-
tion, which resulted in high specificity vs. low sensitivity. Finally, we could not perform a
comparison with term-born neonates, since such data was not available.

4.1.5 Conclusion

This is one of the few longitudinal studies of premature infants from a wide spectrum of
gestational ages, looking at neonatal brain structure and growth between birth and TEA, and
their relation to neurodevelopmental outcomes at 18-24 months of corrected age and 5 years
of age.

Increasing prematurity, as well as several perinatal risk factors were found to have an impact on
brain tissue volumes and their growth between birth and TEA. By fitting and comparing several
GLMs and testing an LDA classifier, we demonstrated that children’s cognitive outcomes at
18-24 months and 5 years of age were strongly associated with parental SES – a well-known
potent modifier of childhood brain development. Moreover, volumetric data at birth and at
TEA contributed to explaining the variability of children’s motor outcomes at 18-24 months,
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while brain volumes at TEA and tissue growth rates between birth and TEA contributed to
explaining the variability of children’s cognitive outcome at 5 years of age. These results suggest
that perinatal brain characteristics in PT infants may influence later functional development.
However, since the overall predictive power of our models was relatively low, further research
is required to elucidate the factors that affect brain development after premature birth.

Promising directions for future research include investigations of finer regional brain divi-
sions, brain cortical surface, structural and functional brain connectivity as other possible
biomarkers for neurodevelopmental outcomes.
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Abstract

Objective: Prematurity is associated with a higher risk of developing behavioral problems in
the long term. However, the association between these negative outcomes, brain development,
and neonatal characteristics at birth has never been investigated. This study aimed to assess
the prognostic utility of volumetric brain data at term-equivalent age (TEA), perinatal data,
and socio-economic status (SES) in the prediction of the behavioral outcome at five years in a
cohort of very preterm infants (VPT).
Methods: T2-weighted magnetic resonance brain images (MRI) of 86 VPT children were
acquired at TEA and automatically segmented into cortical grey matter, deep subcortical gray
matter, white matter, cerebellum, and cerebrospinal fluid. Amygdala was manually segmented
by a medical doctor experienced in amygdala segmentation. Children were followed up at five
years of age with a behavioral assessment, using the Strengths and Difficulties Questionnaire
(SDQ). The utility of TEA brain volumes, clinical data and SES for the prediction of behavioral
outcome at five years was investigated using support vector machine classifiers (SVC) and
permutation feature importance and PCA was used to assess redundancy in the SDQ.
Results: PCA analysis revealed that the SDQ is a valid clinical tool for separating normal from
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at risk, for behavioral problems, subjects. Moreover, the predictive modeling of the volumetric
data showed that the white matter, amygdala and cerebellum volumes are the top predictors
of the emotional subscale of the SDQ. From the clinical data, gender, sepsis and BPD were
found to be the most important predictors for the hyperactivity subscale. When combining
all three sets of variables (volumes, clinical, SES), the volumetric and clinical sets were the
most informative for the prediction of the emotional outcome. Finally, the SES was positively
correlated with the conduct and peer-relations outcomes.
Conclusions: This study provides evidence for the association between volumes at TEA,
clinical and SES variables, and behavioral outcomes at five years of age. We showed that MRI
at TEA could potentially be a good predictor of long-term emotional problems, since altered
volumes of amygdala, white matter and cerebellum at TEA were linked to emotional symptoms
at 5yo in VPT. Moreover, clinical variables such as sepsis, BPD and gender are good predictors
of long-term hyperactivity-related problems. Finally, lower SES scores were associated with
poorer conduct and peer-relations outcomes.

Keywords: Preterm infants, Neurodevelopmental outcome, Behavioral outcome, Machine
learning, Classification, Volumetric brain data, MRI.

Abbreviations

VPT very preterm

GA gestational age

TEA term-equivalent age

MRI magnetic resonance imaging

BW birth weight

BPD bronchopulmonary dysplasia

CSF cerebrospinal fluid

WM white matter

CGM cortical gray matter

SDQ Strengths and difficulties questionnaire

SES socioeconomic status

SVM Support vector machine

MDA Mean decrease accuracy

4.2.1 Introduction

In the last decades, the incidence of preterm births and the survival rate among very preterm
(VPT, birth before 32 weeks of gestation) newborns have increased due to improved assistance
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during high-risk pregnancies and to the progress in medical techniques. As survival rates have
improved, concern about the long-term outcome of the survivors of VPT birth has risen.

To improve outcome for VPT infants, it is crucial to understand both the nature of the cerebral
abnormalities that underlie the wide range of adverse outcomes documented in this popu-
lation, as well as any modifiable perinatal factors involved in pathogenesis. The ability to
better predict outcome in the infant period could enable interventions that improve prognosis.
Prematurity is associated with a high rate of long-term morbidities and a broad spectrum of
neurodevelopmental impairments. These include motor disorders, speech and articulation
problems, learning disorders, intellectual delay, as well as cognitive difficulties (Spittle and
Orton, 2014; Twilhaar et al., 2018; Woodward et al., 2009).

Additionally, premature children show a higher rate of behavioral difficulties and psychiatric
disorders compared to term-born children (Johnson and Marlow, 2014; Bhutta et al., 2002;
Delobel-Ayoub, 2006; Delobel-Ayoub et al., 2009). By childhood, behavioral symptoms become
more specific and can be summarized into a “preterm behavioral phenotype” described by
S. Johnson and coll. and characterized by inattention/hyperactivity, social problems and
emotional symptoms (Johnson and Marlow, 2011).

Several studies have shown that prematurity could have an impact on the ability to regulate
emotions, tolerate frustration, and modulate behavior according to different situations (Bora
et al., 2011; Gardner, 2004; Lejeune et al., 2015; Witt et al., 2014; Woodward et al., 2017).
These problems can lead to weaker social competencies (Peralta-Carcelen et al., 2017), lower
cognitive outcome and educational underachievement (Burnett et al., 2019; Indredavik et al.,
2005), together with psychiatric disorders such as attention deficit hyperactivity disorder
(ADHD), emotional disorders and autism spectrum disorders (ASD) (Indredavik et al., 2005;
Johnson et al., 2010; Johnson and Marlow, 2011; Limperopoulos et al., 2008; Treyvaud et al.,
2013).

Behavioral problems in children and adolescents are often assessed through questionnaires
(Delobel-Ayoub et al., 2009; Gardner, 2004; Indredavik et al., 2005; Samara et al., 2008). Ac-
cording to studies using screening questionnaires, the prevalence of behavioral problems
ranges from 13 to 46% for VPT children (Johnson and Marlow, 2011) and these rates have been
reported to remain stable over time (Gray, 2004a).

The Strength and Difficulties Questionnaire (SDQ, (Goodman, 1997)) is the most frequently
used and well-validated screening tool when investigating behavioral problems in subjects
aged from 4 to 16. It is short to fill in by parents or teachers, allowing a multi-informant
approach, and has excellent psychometric properties in detecting mental health problems.
Behavioral problems are organized on 4 scales (conduct disorder, hyperactivity/inattention,
relationship problems with peers and emotional symptoms) and a fifth scale assesses prosocial
behavior. Several studies have used the SDQ to investigate the behavioral profile of preterm or
low birth weight populations (Graz et al., 2015; Burnett et al., 2019; Delobel-Ayoub et al., 2009;
Fevang et al., 2017; Gardner, 2004; Indredavik et al., 2005; Johnson et al., 2014; Samara et al.,
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2008; van Houdt et al., 2020), confirming the increased risk for symptoms related to the triad
described by Johnson and Marlow ((Johnson and Marlow, 2011)).

Recently, a retrospective multicenter cohort study investigated the prevalence of behavioral
symptoms in VPT children at preschool age (Bartal et al., 2020). Compared to a control group
of fullterm-born children, the rate of overall behavioral problems and symptoms linked to
hyperactivity and inattention was not significantly higher in VTP children. Nevertheless, a
greater prevalence of emotional symptoms has been found in VPT participants, together with
a higher rate of prosocial behavior.

Even in the absence of clear brain injury, PT birth is often characterized by the presence
of subtle alterations of cerebral structures, leading to potential disruption in the typical
progression of child’s development and to subsequent functional consequences. The impact
of preterm birth on the brain can be heterogeneous, ranging from specific focal injuries (Ment
et al., 2009; Volpe, 2009) to a more general alteration of cerebral development (Inder, 2005).
Compared to children born at term, premature children show abnormal tissue volumes at
term equivalent age (Inder, 2005; Keunen et al., 2012; Padilla et al., 2015; Peterson et al., 2003).
Moreover, these alterations are observed even in the absence of severe neonatal complications,
seem to be more pronounced in infants with the lower gestational age and can persist until
childhood and adolescence (de KIEVIET et al., 2012; Inder, 2005; Mewes et al., 2006; Peterson,
2000; Thompson et al., 2007). Several studies in preterm born children have focused on the
relationship between structural brain alterations at TEA and neurodevelopmental outcome
later on, some of them showing an impact of brain abnormalities on cognitive, motor and
neurosensory development (Peterson, 2000; Peterson et al., 2003; Soria-Pastor et al., 2009;
Thompson et al., 2008; Woodward et al., 2006). In addition, neonatal brain abnormalities
have been shown to be associated with psychiatric diagnoses and with the presence of socio-
emotional problems in school-aged VPT children. Treyevaud and colleagues showed that white
matter, cerebellar, cortical and deep gray matter abnormalities in the neonatal period were
associated with a higher risk of psychiatric problems in a group of VPT children aged 7 year old
(Treyvaud et al., 2013). Similarly, Rogers et al. found associations between lower hippocampal
volume and higher prevalence of hyperactivity, inattention and socio-emotional problems
in VPT female preschoolers, while reduced volume in the frontal region was associated with
lower prosocial scores in males (Rogers et al., 2012). These findings are in line with a study
assessing developmental outcome in VPT children aged 4 years old, in which white matter
injury at TEA contributed significantly to internalizing behaviors, behavioral symptoms and
executive functions deficits (Young et al., 2016).

Such studies might offer indications as to what extent neonatal brain MRI can represent a
valuable instrument for prediction of developmental outcomes in this vulnerable population.
Nevertheless, a clear consensus about the importance of neuroimaging brain data at TEA to
predict the neurodevelopmental outcome in the long term is still missing (Linsell et al., 2015).

In the attempt to investigate the association between brain volumes in the neonatal period
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and cognitive outcomes during early childhood, Gui and colleagues showed that brain tissue
volumes at birth and at TEA contributed to the prediction of motor outcomes at 18-24 months,
while volumes at TEA and volume growth rates contributed to the prediction of cognitive
outcome at 5 years of age (Gui et al., 2019). Other studies confirmed these findings, since
the predictive ability of volumetric data was not significant after the adjustment for neonatal
variables (Cheong et al., 2016; Lind et al., 2010).

To our knowledge, no previous studies have tried to disentangle the association between brain
volumes measured at TEA and behavioral outcomes assessed through parental questionnaires
in the preterm population. The main objective of the present research was to evaluate the
ability of brain volumetric data at TEA to predict behavioral outcome at 5 years of age in VPT
infants. Additionally, we also investigated the contributions of either perinatal factors and
parental socioeconomic status to the prediction of behavioral outcome at 5 years of age.

4.2.2 Methods

4.2.2.1 Participants

In the present retrospective cohort study, eighty-six (86) very preterm (VPT) infants born
below 32 gestational weeks (mean ± SD: 28.17 ± 1.65 weeks) at the University Hospitals of
Geneva (HUG) and Lausanne (CHUV) between 2007 and 2013 were included. All participants
underwent a Magnetic Resonance Imaging (MRI) exam at term-equivalent age (TEA). As part
of the standard follow-up of very preterm infants in both hospitals, participants in this study
were given cognitive assessment and behavioral screening at 5 years of age.

Exclusion criteria included severe physical or sensory disabilities, chromosomal abnormalities
and the presence of severe intraventricular hemorrhage (grade 3 or higher) on early cerebral
ultrasounds. Out of the eighty-six (86) infants who had MRI scans at TEA and cognitive
assessment at 5 years, MRI quality was not acceptable for six (6) participants. Therefore, these
children were excluded from subsequent analysis that involved volumetric measures, but were
included in the analysis of the clinical data (see Table B.3 in Appendix B).

Gestational age (GA) was based on the last menstrual period or the best estimation from a
prenatal ultrasound. Birth weight (BW) z-scores were calculated based on the growth curves
by Voigt, Fusch et al. (Voigt et al., 2006). The presence of proven sepsis was defined as at least
one positive blood culture during the hospital stay. Bronchopulmonary dysplasia (BPD) was
defined as a need for supplemental oxygen or ventilatory support at 36 weeks postmenstrual
age (Jobe and Bancalari, 2001). Parental socio-economic status (SES) was estimated using the
Largo scale, which results in a score based on maternal education and paternal occupation
(score range 2–12). Higher SES scores reflect lower socio-economic level (Largo et al., 1989).
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4.2.2.2 MRI acquisition

The MRI examination of the VPT infants was performed at TEA (GA at scan = 40.1 ± 0.8 weeks,
range: 38.3 to 41.9 weeks). The acquisition was performed without the use of sedation, during
infants’ natural sleep. Infants were positioned inside the scanner wrapped in a vacuum pillow
and monitored with electrocardiography and pulse oximetry. In addition, earmuffs were
used for noise attenuation. Imaging data were acquired at both sites (HUG and CHUV) using
identical Siemens Trio Tim (3T) MRI scanners. T2 -weighted images were acquired using the
same protocol at both sites, namely a turbo spin echo sequence (TSE) with parameters: TE =
150 ms, TR = 4600 ms, 113 coronal slices, voxel size: 0.8 x 0.8 x1.2mm3.

4.2.2.3 Image Processing

The automatic segmentation method of Gui, Lisowski et al. (Gui et al., 2012), was employed
to segment all scans into cortical gray matter (CGM), white matter (WM), deep subcortical
gray matter (DSGM), cerebellum (CB), and cerebrospinal fluid (CSF). The segmentation of
the DSGM was improved by using a multi-atlas label fusion method (Heckemann et al., 2006).
The atlases consisted of manually-corrected DSGM segmentations obtained with the method
of Gui et al. (Gui et al., 2012). The DSGM comprised the following brain structures and
nuclei: thalamus, hypothalamus, globus pallidus, dorsal striatum (putamen, caudate), ventral
striatum (nucleus accumbens), and subthalamic nucleus. The resulting segmentations were
visually examined, and small manual corrections were performed when necessary. Global and
hemispheric tissue volumes were then automatically extracted from the final segmentations.

Amygdala was manually segmented in each scan, and its volume was calculated using ITK-
SNAP software (Yushkevich et al., 2006). The segmentation was performed on T2-weighted
MR cerebral images by a medical doctor who was trained in the manual segmentation of
the amygdala for 6 months. The anatomical delineation was based on guidelines for the
localization of the amygdala (Mai and Paxinos, 2012). Bayer and Altman’s histological atlases
were used for the validation and correction of anatomical landmarks (Bayer, 2003). Amygdala
segmentations were performed using the same delineator and the same methodology for all
scans.

4.2.2.4 Behavioral and cognitive outcome data

All children were followed-up around their fifth birthday at the developmental Units of Lau-
sanne and Geneva with a neurological assessment completed by a developmental pediatrician,
and an assessment of cognitive outcomes performed by a developmental psychologist. Behav-
ior was rated by the parents using the SDQ.

The behavioral outcome was assessed using the Strengths and Difficulties Questionnaire
(SDQ), parent version (Goodman, 1997). SDQ is a 25-item questionnaire composed of 5
subscales assessing emotional symptoms, conduct problems, hyperactivity/inattention, peer
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problems, and prosocial behavior. For each item, parents are asked to answer on a 3-point
scale (0 = not true, 1 = somewhat true, 2 = certainly true). The score for each subscale is
computed by summing up the related items. Higher scores reflect more serious difficulties
in the domain, except for the prosocial behavior, for which a high score means positive
behavior. A total difficulties score (ranging from 0 to 40 points) is calculated by adding all
the subscales scores except the prosocial behavior one. The official scoring guidelines (see
http://www.sdqinfo.org) classify the total difficulties score and each subscale as “normal”,
“borderline”, or “abnormal”. Given that most of our participants scored in the normal range
(normal group), we decided to pool together children with borderline and abnormal scores
(“at risk” group).

Intelligence was assessed with the French version of the Kaufman Assessment Battery for
Children (K-ABC I and II, Kaufman and Kaufman (1983)). This psychological diagnostic test
allows the calculation of a cognitive score (IQ) which has an expected mean of 100 and a
standard deviation (SD) of 15.

Data collection was approved by the Ethics Committee of the Canton of Geneva/of the Geneva
University Hospitals. Parents were informed about the modalities and aims of the research
according to the guidelines of the ethics committees of the two hospitals and signed an
informed consent form. The research was carried out according to the Declaration of Helsinki.

4.2.2.5 Statistical analysis

Exploratory analysis: Principal Components Analysis

To first explore and visualize the encoded information and potential relatedness and redun-
dancy of the five SDQ subscales, we employed a Principal Components Analysis (PCA).

PCA is a well-known unsupervised dimensionality reduction technique that constructs rele-
vant features summarizing the original variables via linear combinations. The construction
of these features is achieved by linearly transforming correlated variables (e.g., the five SDQ
subscales) into a set of uncorrelated variables i.e., into the principal components (PCs), which
can be ordered according to how much variance of the original data they explain. The first PCs
capture most of the variance in the data (Jolliffe, 1986; Mourão-Miranda et al., 2005; Zhu et al.,
2005). Before performing the PCA, we z-scored the original input variables to have zero mean
and unit standard deviation and then, constructed and eigen-decomposed the correlation ma-
trix. Eigenvalues are sorted in a decreasing order representing decreasing captured variance
in the data. Finally, the projection of the original normalized data onto the reduced PCA space
is obtained by projecting the originally normalized data onto the leading eigenvectors of the
covariance matrix. The new reduced PCA space maximizes the variance of the original data.

Predictive modeling of behavioral outcome

The present study includes three categories/sets of variables: a) the volumetric data (brain tis-
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sue volumes) for n=80 subjects (DSGM, CGM, WM, CB, CSF, Amygdala), b) the perinatal factors
for n=86 subjects (GA, BW z-score, Gender, BPD, Sepsis) and c) the parents’ socioeconomic
status (SES) for n=86 subjects.

To investigate the predictive ability and prognostic utility of these sets of variables for the
identification of infants with normal or at risk behavioral outcomes (i.e., Emotional symptoms,
Conduct problem, Hyperactivity/inattention and Peer problems subscales of the SDQ) at
five years of age, we employed Support Vector Classifier (SVC) models (linear-SVC, default
parameters, implemented in scikit-learn using Python 3.8) (Hearst et al., 1998; Varoquaux
et al., 2015). The Prosocial subscale of the SDQ was not used, since all participants were
categorized into the normal group.

Classifications were performed using different combinations of the three aforementioned
sets of features: (i) using only the volumetric data (ii) using only the perinatal factors and
(iii) using all the three sets together, i.e., volumetric, perinatal factors and SES. The SES was
considered separately to unveil its contribution to the perinatal factors variables in terms of
predictive power. Stratified K-Folds cross-validation (K=5) was considered to avoid overfitting
issues and deal with the unbalanced dataset (Poldrack et al., 2020). The folds were created
by preserving the proportion of samples for each class. Furthermore, variables measured at
different scales do not contribute equally to the analysis and might create a bias. Thus, to
deal with this potential problem, the training set variables were standardized (µ= 0, æ= 1)
within each fold. Then, the standardization parameters estimated on the training set were
applied to the test set before the model predictions. Finally, the classifiers’ prediction ability
was assessed by receiver operating characteristic (ROC) curves, and the corresponding area
under the curve (AUC) was evaluated.

Feature importance

To quantify the feature importance of the input variables, we employed a permutation-based
method known as Mean Decrease Accuracy (MDA) analysis (Breiman, 2001). This technique
assesses the feature importance of a variable by evaluating the decrease in the model’s accuracy
when its values are shuffled. We estimated and reported the MDA across permutations, that
is, the decrease in accuracy when a specific feature is shuffled, which is expected to be a
positive value if the underlying feature is important in terms of classification power and
separability. However, negative values of MDA can be observed in practice. In those cases,
the predictions on the shuffled, noisy data happen to be more accurate than the real data.
This might happen when the feature is not essential, but random chance can also cause the
predictions on shuffled data to be more accurate. Finally, to evaluate the feature importance
of each of the three sets of variables as a whole (i.e., volumetric, perinatal factors, and SES), we
shuffled the values of all the variables contained in each subset. In all cases, the number of
shuffles (permutations) was set to 1000.

Linear models and Analysis of Variance
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We completed the statistical analysis by associating the socioeconomic status (SES) variable
with the behavioral outcomes. Additionally, to investigate the predictive utility of the SES
variable, we constructed General Linear Models (GLMs) and we conducted an ANOVA. We
compared the models to explore the contribution of the SES to the prediction of the behavioral
outcomes at five years of age.

4.2.3 Results

4.2.3.1 Cohort characteristics & brain tissue volumes at TEA

Table 4.9 – Cohort characteristics: The perinatal data were available for 86 subjects whereas
the absolute tissue brain volumes at TEA for 80 subjects.

Participants N = 86

Perinatal data
Male gender, n (%) 41 (47.67)
GA, weeks, mean (SD), range 27.82 (1.65) 23.86-32
Birthweight, g, mean (SD), range
Birth weight z-score, mean (SD)

992.15 (240.71) 600-1730
-0.41 (0.70)

BPD, n (%) 31 (36.04)
Sepsis, n (%) 24 (27.90)
PVL, n (%) 4 (4.65)
Parental socio-economic status
SES score, mean (SD), range 6.43 (3.00) 2-12
Participants N = 80
Absolute tissue volumes, ml
CGM, mean (SD) 165.78 (23.59)
DSGM, mean (SD) 21.13 (1.97)
WM, mean (SD) 147.80 (15.94)
Amygdala, mean (SD) 0.82 (0.15)
CB, mean (SD) 22.71 (3.61)
CSF, mean (SD) 100.89 (25.51)

Table 4.9 illustrates the perinatal characteristics of our cohort, together with the means of the
absolute brain volumes at TEA.

4.2.3.2 Outcome at 5 years of age

All participants had a normal neurological examination. Overall, 80% of participants had an IQ
in the normal range (i.e., score higher than 85, as assessed by the K-ABC battery), 13% between
70 and 85, and 7% below 70. Table 4.10 shows the scores of the SDQ questionnaire for the total
difficulties score and each subscale. Based on statistical t-tests, no significant differences were
found between the two groups of children with and without volumetric data measured at TEA
(n=80 and n=86). The majority of the participants had a normal total score (87% of the whole
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sample). The behavioral problems that are mostly represented in our population are conduct
problems and emotional symptoms (23% and 20%, respectively), followed by a relatively low
rate of peer problems and hyperactivity/inattention symptoms (17% and 16%, respectively).
Concerning the prosocial behavior score, all participants scored within the normal range.

Table 4.10 – Behavioral outcome at 5 years of age using the SDQ Questionnaire

Strengths and Difficulties
Questionnaire

Participants
(MRI at TEA)
n = 80

Participants
(No MRI at TEA)
n = 86

P-value

Total Difficulties Score
Normal (range 0-13)
At risk (range 14-40)

Emotional symptoms score
Normal (range 0-3)
At risk (range 4-10)

Conduct problems score
Normal (range 0-2)
At risk (range 3-10)

Hyperactivity/inattention score
Normal (range 0-5)
At risk (range 6-10)

Peer problems score
Normal (range 0-2)
At risk (range 3-10)

Prosocial behavior score
Normal (range 6-10)
At risk (range 5-0)

69 (86%)
11 (14%)

63 (79%)
17 (21%)

61 (76%)
19 (24%)

66 (83%)
14 (17%)

66 (83%)
14 (17%)

80 (100%)
0 (0%)

75 (87%)
11 (13%)

69 (80%)
17 (20%)

66 (77%)
20 (23%)

72 (84%)
14 (16%)

71 (83%)
15 (17%)

86 (100%)
0 (0%)

0.861
0.586

0.938
0.998

0.856
0.897

0.989
0.998

0.935
0.890

0.883
-

No significant differences were observed for any of the brain absolute tissue volumes (CGM,
DSGM, CB, WM, CSF, Amygdala) between the normal and at risk SDQ groups (see Figure B.2
and Table B.4 in Appendix B).

4.2.3.3 Exploratory analysis of the SDQ subscales using PCA

To visualize the projected data, as well as the contribution of the original variables in the same
plot, we created a biplot. Figure 4.5 shows the biplot of the five SDQ subscales projected into
the subspace spanned by the first two principal components. PC1 captures 50% of the variance
of the data, and it is mostly influenced by the Conduct problems, Emotional symptoms, and
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Prosocial behavior SDQ subscales. PC2 captures 20% of the variance of the data and captures
the contrast between the Hyperactivity/inattention & Peer problems SDQ subscales. The scree
plot of the PCA analysis is shown in Figure B.3 in Appendix B. We also plot the SDQ Total
Difficulties score values for all subjects on the biplot. Red points represent the subjects at risk
that belong to the group, whereas green points represent the normal ones based on the SDQ
total Difficulties score. We observe that, in the PCA reduced space, a clear separation between
normal and subjects at risk can be achieved by projecting the subjects (points) onto the first
principal component (PC1).

Figure 4.5 – The PCA biplots following the PCA analysis on the five SDQ subscales (Emotional,
Prosocial, Conduct, Hyperactivity/inattention and Peer problems). Green and red points
represent subjects in the normal (total difficulties scores normal) and at-risk group (total
difficulties scores at risk = borderline scores & abnormal scores), respectively.

4.2.3.4 Predictive modeling: Classification of the behavioral outcomes

I. Using only volumetric data (brain tissue volumes measured at TEA)

The top panel of Figure 4.6 shows the classification ROC curves with cross-validation for the
case where only the volumetric data were used as features. Only the performance of the
model predicting the Emotional symptoms subscale is reliable, with an average AUC 0.74
(0.06) across all the stratified folds. The bottom panel of Figure 4.6 indicates that based on
this model (Emotional symptoms), the most informative features (according to the MDA),
in decreasing order, are the WM, Amygdala, CB, DSGM, CGM, CSF volumes. The remaining
models have an average AUC around chance, indicating that those models are not reliable.

II.Using the perinatal factors
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Figure 4.6 – Top panel: Classification ROC curves using only the volumetric data and, as target
variables, the four SDQ subscales (i.e., Emotional, Conduct, Hyperactivity/inattention and
Peer problems). Bottom panel: The Mean Decrease Accuracy (MDA) using 1000 permutations
of the individual volumetric variables. Bar height represents the average across permutations
MDA value, and the error bars show the standard deviation of these MDA values.

Figure 4.7 shows the classification ROC curves with cross-validation for the case where only
the perinatal factors were used as features. Only the performance of the model predicting
the Hyperactivity/inattention subscale is reliable, with an average AUC 0.75 (0.08) across all
stratified folds. The bottom panel of Figure 4.7 indicates that the most informative features in
terms of classification performance for this specific model (Hyperactivity/inattention) are,
in decreasing order, the Gender, Sepsis and BPD. On the other hand, the BW z-score and
GA variables are not considered as important in terms of predictions, given that the range
of the standard deviation of the MDA values includes negative values. Furthermore, it is
worth pointing out that the MDA values are small, meaning that the influence on the model’s
predictive power is limited. Post-hoc analysis showed that females tend to have slightly
higher levels of hyperactivity/inattention, although the difference is not statistically significant
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(p = .59). Similarly, children with sepsis showed higher levels of hyperactivity/inattention
compared to children without sepsis, even if the comparison felt short of significance (p = .29).

Figure 4.7 – Top panel: Classification ROC curves using only the perinatal factors and, as target
variables, the four SDQ subscales (i.e., Emotional, Conduct, Hyperactivity/inattention, and
Peer-problems). Bottom panel: The Mean Decrease Accuracy (MDA) using 1000 permutations
of the clinical variables, individually. Bar height represents the average across permutations
MDA value, and the error bars show the standard deviation of these MDA values.

III.Using all three sets of variables: volumetric data, perinatal factors and socioeconomic status
(SES)

The top panel of Figure 4.8 shows the classification ROC curves with cross-validation for the
case where all three sets of variables were used as features (volumetric, perinatal and SES).
The performance of the models predicting the Emotional symptoms subscale is reliable, with
an average AUC of 0.76. The bottom panel of Figure 4.8 indicates that the most informative
set of features in terms of classification performance for the Emotional symptoms subscale
model is the volumetric set of variables. Note that variable sets with a standard deviation of
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the MDA values below zero cannot be considered as important. The remaining models have
an average AUC around or below chance level, indicating that those models are not reliable
and thus, not further explored.

Figure 4.8 – Top panel: Classification ROC curves using all three sets of variables (volumetric,
perinatal and SES) and, as target variables, the four SDQ subscales (i.e., Emotional, Conduct,
Hyperactivity/inattention, and Peer problems). Bottom panel: The Mean Decrease Accuracy
(MDA) using 1000 permutations of the individual sets of variables. Bar height represents the
average across permutations MDA value for the specific set of variables, and the error bars
show the standard deviation of these MDA values.
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4.2.3.5 Linear models for the prediction of the behavioral outcome

Associations between SES and behavior outcomes

The analysis of outcomes by linear models showed that high SES score (i.e., low parenal SES)
was associated with higher the conduct problems score (r=0.155, p=0.0015), as well as with
higher peer problems score (r=0.156, p=0.0098), but not with any other behavioral scores.

Model comparisons

Table 4.11 shows the ANOVA p-values table of the different model comparisons. Based on
these comparisons, the SES variable, when added to the volumetric and perinatal factors sets,
does not contribute significantly to the prediction of the SDQ subscales scores, except for the
conduct problems scores (first column, Table 4.11). Furthermore, the SES adds significant
information when added in the linear model of the volumetric data in terms of predictions of
the peer problems, conduct problems and hyperactivity/inattention scores (second column,
Table 4.11). Finally, the SES adds weaker information when added to the linear model of
the perinatal factors set of variables and only contributes to the prediction of the conduct
problems score (third column, Table 4.11). This contribution is expected since the SES is
significantly positively correlated with the conduct problems score.

Table 4.11 – ANOVA table showing the p-values of different models’ comparisons. For each
SDQ subscales score, we report the p-value of comparing predictive models with and without
an additional variable or set of variables.

SES to Volumetric
+ perinatal factors

SES to Volumetric
SES to perinatal
factors

Peer problems 0.1231 0.0236 0.0605
Conduct problems 0.0096 0.0008 0.0063
Emotional symptoms 0.2756 0.2924 0.2442
Hyperactivity/inattention 0.1210 0.0285 0.1431

4.2.4 Discussion

In this study, we investigated the ability of either brain volumetric data measured at TEA,
perinatal factors and parents’ SES to predict behavioral outcome at 5 years of age in children
born VPT. A growing body of research has focused on the utility of brain volumetric data in the
predictability of neurodevelopmental outcome. Nevertheless, there is still no consensus on
the prognostic value of brain volumes measured by MRI at TEA for predicting neurodevelop-
mental outcomes in childhood, especially concerning the behavioral and emotional aspects
of children development (Linsell et al., 2015).

The SDQ is one of the most popular questionnaires used to assess behavioral problems in
children born both at term and prematurely, showing very high reliability and acceptance
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among parents (Bartal et al., 2020; Johnson et al., 2014). In our sample, 87% of children
showed a total difficulties score in the normal range. Abnormal scores were mainly found
in the conduct problems subscale (23%), followed by emotional symptoms (20%). Finally, a
relatively low rate of peer problems and hyperactivity/inattention symptoms have been found
in our sample (17 and 16%, respectively). These results are partly consistent with those of a
recent paper on a Swiss cohort of preterm-born children of the same age (Bartal et al., 2020),
where emotional problems were reported to occur more frequently compared to term-born
children, and hyperactivity was not a prominent symptom. Other studies using the SDQ found
a higher occurrence of conduct problems and emotional symptoms in this clinical population
(Fevang et al., 2017; Johnson et al., 2014). Nevertheless, it is worth noting that these studies
also reported a higher rate of hyperactivity/inattention symptoms and peer problems, findings
that are not in line with ours.

Exploratory analysis

As a first exploratory step in our analysis, we investigated the information encoded by the SDQ
questionnaire in order to unveil potential information redundancies of the different subscales
of the questionnaire. Principal Component Analysis (PCA) of the SDQ subscales revealed that
a large amount of variance (50%) was explained by the combination of conduct problems,
emotional symptoms and prosocial behavior subscales. Additionally, all these three variables
were highly correlated as revealed by the PCA biplot. A smaller amount of variance (20%) was
explained by the contrast (i.e., variables pointing in opposite direction in the biplot) of the hy-
peractivity/inattention with the peer problems subscales. Therefore, we can conclude that the
SDQ Total Difficulties score is mainly influenced by conduct problems, emotional symptoms
and prosocial behavior scores, while hyperactivity/inattention and peer problems scores are
less represented. These results underline the importance of carefully considering each of the
subscales of the questionnaire in a clinical setting, in order to avoid losing important informa-
tion on the behavioral outcome of the children. Studies on the screening efficiency of the SDQ
questionnaire revealed that this tool can predict conduct-oppositional disorders, hyperactivity
disorders and depression with relatively few false negatives (Goodman et al., 2000a, 2003).
Based on our PCA analysis, conduct problems, emotional symptoms and prosocial behavior
scores are strongly correlated. This result suggests the presence of high comorbidity between
these symptoms, which is confirmed by longitudinal studies highlighting the co-occurrence of
mood disorders such as depression and conduct problems in children and early adolescents,
leading to worsened social competencies and low academic performance (Capaldi, 1992;
Ingoldsby et al., 2006; Olsson, 2009). Finally, we observed that a clear separation between
normal and at-risk subjects can be achieved in the PCA reduced space when projecting the
subjects onto the first principal component (PC1). This suggests that the information encoded
in the correlated variables that influence the most PC1 (i.e., conduct problems, emotional
symptoms and peer problems), is sufficient for abnormality detection in terms of SDQ total
difficulties score categorization.
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Predictive modeling

To study the relationship between brain tissue volumes measured in the neonatal period (TEA)
and subsequent neurodevelopmental long-term outcome, we performed a predictive analysis
using SVM to classify the behavioral outcomes of VPT children into normal and at risk.

Using the volumetric dataset, we were able to predict the emotional symptoms’ score with a
satisfying AUC (AUC = .74). Permutation importance analysis revealed that the most important
variables in terms of classification accuracy of the model were the white matter, the amygdala
and the cerebellum absolute volumes. An association between white matter abnormalities
and emotional disorders has already been proven in adults (de Groot et al., 2000; Skellern
et al., 2001; Spittle et al., 2009). Recent studies confirmed this link in a younger population,
showing microstructural abnormalities in cingulum-callosal white matter pathways and
uncinate fasciculus in children with emotional dysregulation (Hung et al., 2020; Stephens
et al., 2020; Versace et al., 2015). Furthermore, the amygdala is a key region in the neural circuit
involved in emotional competencies, and it is particularly vulnerable in case of premature
birth (Rutherford, 2002). Cismaru and colleagues (Cismaru et al., 2016) showed that amygdala
volumes at TEA were significantly smaller in VPT children compared to term children, and
that this reduction was associated with poorer fear-processing ability. Additionally, altered
amygdala connectivity in preterm children has been associated with social functioning deficits
and emotional difficulties (Johns et al., 2019). Finally, the cerebellum is another brain region
that is particularly at risk in preterm children (Gano and Ferriero, 2017; Limperopoulos et al.,
2014; Volpe, 2009) and cerebellar abnormalities have been linked to affective problems such
as socialization deficits and mood abnormalities (Tavano et al., 2007).

When using the clinical dataset, we were able to predict the hyperactivity problems score
with an AUC = .75. In that case, permutation importance analysis revealed that the most
important variables in terms of classification accuracy of the model were gender and the
presence of sepsis and bronchopulmonary dysplasia (BPD). Concerning the link between
gender and hyperactivity/inattention problems, post-hoc analysis (see Figure B.4) showed
that females tend to have slightly higher levels of hyperactivity/inattention score, although the
difference is not statistically significant. This is in line with several studies indicating that the
male predominance of hyperactivity disorders in the general population is missing in preterm
children (Elgen, 2002; Indredavik, 2004; Johnson and Marlow, 2011). The impact of BPD on
premature infants long-term outcomes covers a broad spectrum of consequences, ranging
from neurosensory problems to cognitive functioning, language, memory, visuo-spatial skills,
memory and behavioral problems (Doyle and Anderson, 2009). Our results suggest an asso-
ciation between BPD and hyperactivity/inattention symptoms. This corroborates previous
studies that showed impaired sustained attention in BPD children compared to controls and
reported a double rate of attention deficit-hyperactivity disorder in premature BPD children
compared to premature non-BPD children at 8 years (Cheong and Doyle, 2018; Short et al.,
2003). Moreover, perinatal risk factors such as sepsis has been associated with adverse out-
come in PT children (Miller et al., 2005b). Kavas and colleagues (Kavas et al., 2017) found
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that postnatal sepsis is a risk factor for the development of minor neurological dysfunctions,
leading to lower IQ and significantly increased incidence of hyperactivity in children born
with very low birth weight, which is in line with our results, as the post hoc analysis showed
a tendency for more hyperactivity problems in subjects with sepsis, compared to subjects
without sepsis. However, the statistical difference was not significant. Consistent with our
results, Delobel-Ayoub and the EPIPAGE study group (Delobel-Ayoub, 2006) did not find any
significant relationship between behavioral problems and the degree of gestational age or
birth weight, a result found in other studies (Gray, 2004b; Graz et al., 2015; Yang et al., 2011).

Finally, when combining parental socio-economic status (SES), with the volumetric and
perinatal data (all three sets of variables combined), we were able to accurately predict the
emotional symptoms score (AUC = 0.76). Permutation importance analysis unveiled that the
volumetric and perinatal datasets were the most important in terms of the model’s accuracy
improvement. This is in line with the results of the analysis where only the volumetric data
were used, which showed a good prediction for the emotional symptoms score. However, it is
worth pointing out that in this case, where all three datasets were combined, the predictive
ability of the model was slightly higher (AUC = 0.76 for all three datasets, compared to AUC =
0.74 for the volumetric dataset alone). This is expected, since the addition of more variables
provides more information in terms of classification power. Moreover, it is important to note
that the SES is the least important factor that predicts the presence of emotional symptoms
at 5 years. This is quite surprising since the impact of SES on the prevalence of behavioral,
and more specifically emotional problems is well documented in typical children (Bøe et al.,
2011; Hosokawa and Katsura, 2018) and also in preterm populations (de Laat et al., 2016).
However, Conrad and colleagues (Conrad et al., 2010) showed that biological factors (such as
birth weight) account for more variance in parent behavioral ratings than factors associated
with SES in preterm children. In this study, biological factors such as brain tissue volumes at
TEA and perinatal factors are more important in predicting long-term emotional outcome
than parental socio-economic status (SES).

Linear Models

In order to better understand and prognosticate behavioral outcomes associated with preterm
birth, we then used a LM of outcomes including the parent SES, the volumetric data and the
perinatal risk factors.

Child SES, characterized by parental educational attainment and parental occupation, has
been shown to be strongly associated with cognitive development in PT children (Mangin
et al., 2016; Gui et al., 2019). Associations between behavioral problems and environmental
factors, have also been reported (Bradley and Corwyn, 2002b; Nicholson et al., 2010; Girouard
et al., 1998; McCormick et al., 1996) and this is in line with the current findings, which provide
evidence of the influential role of the SES on long-term bevarioural outcome. Indeed, when
we explored the associations of the SES variable with the behavioral outcomes in our cohort
using linear models, we found a significantly positive correlation between the SES and the
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conduct problems score (r=0.155, p=0.0015), as well as between SES and the peer problems
score (r=0.156, p=0.0098), but not with any other behavioral score. Therefore, our results show
that the lower the socio-economic status of the family (i.e., higher SES scores) is, the higher
the conduct and peer problems in these children at five years of age are.

Concerning the predictive utility of SES, ANOVA results showed when it is added to the
volumetric and clinical combined sets, it does not contribute significantly to the prediction
of the behavioral outcomes, except for the conduct problems score. This is in line with the
classification results of the last case where all three sets of variables were used for the prediction
of the emotional outcome and SES was shown not to be contributing to the model. However,
based on the model comparisons, the SES adds significant information in terms of predictions
of the peer problems, conduct problems and hyperactivity/inattention scores, when added
in the linear model of the volumetric data. Finally, the SES adds weaker information when
added to the linear model of the perinatal variables and contributes only to the prediction of
the conduct problems score. This is expected since SES is significantly positively correlated
with the conduct problems score.

Taking into account all these findings we could argue that the prediction of long-term be-
havioural outcome is a complex task and that different influential factors contribute to the
prediction of different behavioural subscales. These results suggest that the volumetric assess-
ments at birth and TEA contribute to the prediction of outcomes, but their relevance is limited.
This could be due to the fact that our cohort was a relatively healthy one, exhibiting no major
brain injury, and with few children whose outcomes indicated neurodevelopmental delay.
Moreover, the inclusion of SES into the volumetric dataset improves performance indicating
that SES is an informative factor but, the perinatal variables appear to conceal the value of
SES given that we did not find a significant contribution of SES when added to the combined
volumetric and perinatal sets.

4.2.4.1 Limitations

The present study has two main limitations. First, here we used the parent form of the SDQ,
which might not be sensitive enough. Indeed, multi-informant SDQs (based on parents
and teachers) were found to be much more sensitive in identifying of behavior problems in
children that need psychological intervention (Goodman et al., 2000b). Unfortunately, no
multi-informant SDQ was available in this study. Second, the classification performance
might be influenced by the unbalanced nature of the two groups. However, to deal with the
high specificity vs. low sensitivity problem, stratified K-Fold cross-validation was employed
and we report results in terms of cross-validated outcomes. Moreover, in the present study
we studied the relation of global tissue volumes with neurodevelopmental outcome however,
there are several studies that have explored these associations using finer brain segmentation
volumes, providing more fine-grained information on these associations. This constitutes a
feasible extension of our work for the near future.

112



4.2. Journal Preprint: Behavioral outcome of very preterm children at five years of age:
Prognostic utility of brain tissue volumes at TEA and perinatal factors

4.2.5 Conclusion

This is one of the few studies of VPT children looking at brain structure measured at TEA,
and their relation to behavioural outcomes at 5 years of age. This study provides evidence
for the association between volumes at TEA, perinatal risk factors and SES, and behavioral
outcomes at five years of age. We showed that brain volumes at TEA, specifically, volumes of
amygdala, white matter and cerebellum contributed to explaining the variability of children’s
emotional symptoms at 5 years of age. Moreover, gender and perinatal variables such as
sepsis and BPD were shown to predict long-term hyperactivity-related problems. Finally, SES
was positively correlated with the conduct and peer-relations outcomes, and seems to add
predictive power for the detection of behavioral problems such as conduct problems, peer
problems and hyperactivity/inattention symptoms when added to the volumetric variables
measured at TEA.
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5 Advanced models for neurodevelop-
ment

Although, brain alterations due to prematurity have been previously extensively investigated
(Dewey et al., 2019; Karolis et al., 2017; Alexander et al., 2019; de Almeida et al., 2021; Inder,
2005), the exact sequence of brain abnormality underlying preterm birth has never been ex-
plored. Neurodevelopment is a dynamic process characterized by large macroscopic changes
where brain abnormality compensation mechanisms are highly present (Young et al., 2020;
de Silva et al., 2020). Conditions such a preterm birth may change the dynamic process of
neurodevelopment and lead to developmental delay, similar to disease progression. Thus,
understanding the sequence of biological events of the encephalopathy of prematurity can
provide valuable insights into the underlying pathophysiology and can help develop more
targeted interventions aiming to prevent severe delay through resilience.

The first article in this chapter is a preprint aiming to unveil, for the first time, the disease
progression of prematurity using advanced models that have been previously used to suc-
cessfully characterize other diseases’ progression (Fonteijn et al., 2012; Young et al., 2014).
Preterm birth leads to developmental delay similar to disease progression and thus, disease
progression models might be of potential clinical use in prematurity.

In the second section of this chapter, we introduce a novel, data-driven framework that
enables the spectral graph theory analysis of the functional connectome at the voxel level.
The proposed framework is able to characterize, for the first time, the brain’s fundamental
organizational principles, without the use of a parcellation scheme. We validate and illustrate
the importance of the proposed method using 40 subjects from the Human Connectome
Project (HCP). Our results indicate the presence of both functional gradients and community
structure at the voxel level revealing fine-grained, dominant connectivity eigenmodes. The
code developed to perform the analysis is available at https://github.com/seralouk/Voxel_
wise_Laplace_Modularity.
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Abstract

Preterm birth has been strongly associated with adverse cognitive, behavioural and motor
outcomes that may persist into school age and even into adulthood. Understanding the un-
derlying brain mechanisms as well as the sequence of the disease progression may allow more
targeted and individualized early therapeutic interventions aiming to prevent the observed
adverse outcomes. Using Magnetic Resonance Imaging (MRI), several studies have explored
the brain abnormalities associated with preterm birth. However, no previous study has tried
to unveil the disease progression of prematurity. In this study, we use a data-driven approach,
the event-based modeling (EBM) method, to explore the disease progression of prematurity,
producing a fine-grained estimation of the sequence of brain volumetric abnormality changes
in prematurely-born infants at term-equivalent-age (TEA). We hypothesized that prematurity
can change the process of neurodevelopment similar to disease progression and thus, models
such as the EBM that have been previously employed to characterize other diseases’ progres-
sion, might be of potential clinical use in prematurity as well. Event sequences obtained with
EBM showed that the first biomarkers to become abnormal were the brainstem and white
matter whereas the last biomarkers were found to be the cerebellum and the subcortical gray
matter. This is the first study to unveil and characterize the progression of encephalopathy of
prematurity using a data-driven approach.

Keywords: Premature birth, Neurodevelopment, Progression model, Event-based model, Disease
progression, Brain volumes
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5.1.1 Introduction

Preterm birth is defined as the birth before 37 weeks of gestation and it is a major pediatric
public health problem. According to the World Health Organization (WHO), approximately
15 million babies are born preterm every year. Premature infants are likely to suffer from
chronic health issues with infections, asthma and feeding problems being the most probable
to develop or persist. Additionally, complications due to prematurity have been reported to be
the leading cause of death in children under 5 years of age (Liu et al., 2016).

Furthermore, converging evidence suggests that preterm birth disturbs the genetically deter-
mined program of corticogenesis in the developing brain. Recent advances and improvements
in the perinatal care units have led to increased survival rates of these preterm infants. How-
ever, despite the decreasing mortality rates, the incidence of preterm birth is increasing
world-wide and has been strongly associated with persistent neurodevelopmental disabili-
ties such as cognitive, motor and behavioural adverse outcomes (Delobel-Ayoub et al., 2009;
Marlow et al., 2005; Arpino et al., 2010; Doyle and Anderson, 2010). Cognitive problems refer
to thinking and learning abilities, motor development problems refer to the ways children
move, such as by crawling and walking, while behavioural deficits refer to attention and poor
social/interactive skills inabilities. Worryingly, the aforementioned adverse outcomes may
also persist into school age and adulthood (Soleimani et al., 2014). Larroque et al., highlighted
that only 61% of infants born at 24–32 weeks of gestational age were free of mild, moderate, or
severe disabilities at 5 years of age (Larroque et al., 2008). Additionally, compared to full-term
born children, preterm infants have a three times odds of developing a psychiatric disorder
(Treyvaud et al., 2013). It is thus evident that early identification of infants at high risk of
neurodevelopmental impairments as well as a better characterization of the underlying brain
abnormalities can be extremely valuable since it will allow a more targeted early intervention
aiming to improve and even prevent these adverse neurodevelopmental deficits through
resilience (Sutton and Darmstadt, 2013). Principally, early developmental interventions have
been provided in the clinical setting either during hospitalization or post-hospital discharge
focusing on the improvement of overall outcomes for these infants.

While the main underlying mechanisms and processes of these brain development alterations
have not yet fully unveiled, magnetic resonance imaging (MRI) provides a non-invasive, in
vivo technique to study the developing brain. Over the past decade, MRI has provided valuable
insights and has played a central role in studying the preterm brain and identifying relevant
neuroimaging altered biomarkers. It has been reported that preterm-born children have
smaller cortical grey matter, cortical white matter, basal ganglia and cerebellum brain volumes
compared to control children born at term (Counsell and Boardman, 2005). Additionally,
reduced brain volumes, following preterm birth, in important brain areas for high executive
functions such as sensorimotor, parieto-occipital and fronto-temporal regions have been
reported by several studies (Peterson et al., 2003; Gimenez et al., 2006). Moreover, it has been
shown that preterm-born children have decreased structural connectivity in cortico-basal
ganglia-thalamocortical loop connections compared to full-term born children providing
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evidence for impaired networks relevant for higher-order cognitive skills and social cognition
(Fischi-Gómez et al., 2015). Finally, resting-state functional connectivity alterations between
the amygdala, parietal and temporal cortices, that could be linked to the deficits in emotion
processing, have been observed in preterm-born adults (Papini et al., 2016).

Although functional, structural and volumetric brain alterations due to prematurity have been
previously studied (Dewey et al., 2019; Karolis et al., 2017; Alexander et al., 2019; Gui et al.,
2019; de Almeida et al., 2021; Inder, 2005), the exact sequence of brain abnormality underlying
preterm birth has never been investigated. Understanding the sequence of biological events
along the course of prematurity provides valuable insights into the underlying pathophysiology
and can help intervention selection and setup.

In this study, we employ a data-driven approach to unveil the disease progression of pre-
maturity, producing a fine-grained estimation of brain volumetric abnormality changes in
prematurely-born infants at term-equivalent-age (TEA). We hypothesize that preterm birth
alters the dynamic process of neurodevelopment and leads to developmental delay similar
to disease progression. Thus, advanced statistical models, such as the event-based model
(EBM) (Fonteijn et al., 2012; Young et al., 2014), that have been previously used to successfully
characterize other diseases’ progression, might be of potential clinical use in prematurity.

Previous works have demonstrated the EBM is able to accurately order biomarkers with a
fine-grained ability in separation of Cognitively normal (CN) and AD subjects as well as to
distinguish between Mild Cognitive Impairment (MCI) to AD or from CN to MCI (Fonteijn et al.,
2012; Young et al., 2014). The EBM is a probabilistic data-driven method developed to explore
the evolution of biomarkers as the disease develops and progresses (Oxtoby et al., 2018). To
the best of our knowledge, this is the first study to unveil and characterize the timeline of
encephalopathy of prematurity using a generative, probabilistic, data-driven method.

5.1.2 Methods

5.1.2.1 Participants

A total of seventy-five (n=75) full-term (FT) infants born after 37 gestational weeks (mean ± SD:
39.614 ± 1.105 weeks) and one-hundred-eighty-one (n=181) preterm infants born before 32
gestational weeks (mean ± SD: 28.526 ± 1.746 weeks) from different cohorts were selected and
consisted the final cohort for this study. All cohorts were analyzed using the same methodology
(see 5.1.2.3). Analysis of covariance revealed no significant effects of the scanner type on brain
volumes controlled for GA at birth (Table C.1 in Appendix C). The population characteristics
are reported in Table 5.1. Furthermore, there was no statistically significant difference in
gender between the two groups (Fisher’s exact test; p-value = .885).

Each study was approved by the local medical ethics committee. All infants were born either
at the University Hospital of Geneva (HUG) or at the University Hospital of Lausanne (CHUV).
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Gestational age (GA) was estimated based on the last menstrual period or via based on a
prenatal ultrasound. All infants underwent a Magnetic Resonance Imaging (MRI) session
at term-equivalent-age (TEA). The exclusion criteria for this study included the presence of
intraventricular hemorrhage (∏ grade 3) and hemorrhagic parenchymal infarction, as assessed
by an early cerebral ultrasound, as well as physical or sensory disabilities and chromosomal
abnormalities.

Table 5.1 – Population characteristics for the full-term and preterm infants. Student t-tests
were performed for continuous variables and Fisher’s exact tests for categorical variables.

PT (n=181) FT (n=75) P-value

GA at birth; mean (SD) 28.526 (1.746) 39.614 (1.105) p < .001
GA at MRI; mean (SD) 40.231 (.757) 40.372 (1.787) p = .376
Birth weight (g); mean (SD) 1105.076 (302.16) 3357.237 (376.004) p < .001
Gender (M/F) 87 / 94 35 / 40 p = .885

5.1.2.2 Data Acquisition

For all infants, the MRI examination was performed at term-equivalent-age (TEA) (GA at
MRI scan; mean ± SD; PT group: 40.231 ± .757, FT group: 40.372 ± 1.787). There was no
statistically significant difference in the gestation age (GA) at the MRI scan between the two
groups of infants (p-value = .376, GA at MRI; mean ± SD; PT: 40.231 ± .757, FT: 40.372 ± 1.787).
All infants were positioned inside the scanner wrapped in a vacuum pillow. Monitoring was
performed using electrocardiography and pulse oximetry. Furthermore, the acquisition was
performed without the use of sedatives and during infants’ natural sleep. Finally, to protect
the infants from noise, earmuffs were used.

5.1.2.3 Image preprocessing

Brain volumetric data (tissue volumes) were extracted for each infant. All neuroimaging
brain scans were segmented into cortical gray matter (CGM), white matter (WM), subcortical
gray matter (SGM), cerebellum (CB), cerebrospinal fluid (CSF), and brainstem volumes using
an automatic segmentation method (Gui et al., 2012). The segmentation of the subcortical
gray matter was further improved using a multi-atlas label fusion method (Heckemann et al.,
2006). Moreover, the atlases consisted of manually-corrected SGM segmentations. The SGM
consisted of the following brain structures: thalamus, hypothalamus, globus pallidus, dorsal
striatum (including putamen & caudate), ventral striatum (including nucleus accumbens)
and subthalamic nucleus. The resulting segmentations were visually inspected and manually
corrected if needed. Global and hemispheric tissue volumes were then automatically extracted
from the final segmentations.
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5.1.2.4 The Event-based model

The event-based model (EBM) is a generative, probabilistic, data-driven method that was first
developed to explore the evolution of biomarkers, as disease unfolds (Fonteijn et al., 2012;
Young et al., 2014; Oxtoby et al., 2018), using cross-sectional data. The underlying assumption
of the model is that the disease is characterized by a monotonic change of biomarkers towards
abnormality, which represents the disease progression. This change is also assumed to be
irreversible.

Each biomarker is treated by the model as either “normal" or “abnormal". The biomarker’s
probabilistic transition from the normal to the abnormal state is defined as an “event". In other
words, an event is a statistical deviation from normality (as defined by controls’ data) toward
abnormality/disease (as defined by patients’ data). The EBM estimates the probabilistic
"sequence of events" that describes the most likely ordering of events that characterize the
transition of a subject from the healthy to disease state (Young et al., 2014) and the uncertainty
(positional variance diagram) in the sequence. Conceptually, higher prevalence corresponds
to an earlier position in the estimated sequence. The positional variance diagram depicts the
posterior distribution on S and is essentially a histogram (confusion matrix) of the position in
the ordering of each event over the set of MCMC samples.

Formally, the likelihood of an ordered sequence S, assuming independent observations and
biomarkers, is defined as
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with x 2 X being observations of i 2 M biomarkers and j 2 N being the subjects in the cohort
(Fonteijn et al., 2012).

The characteristic ordering (S) is the sequence that maximizes the likelihood Pr (X |S) in
Eq. 5.1. Event probability of each biomarker is a function of the likelihood of an event having
occurred i.e. Pr (xi j |Ei ) or not having occurred i.e. Pr (xi j |¬Ei ), modeled by a two-component
univariate mixture model (Fonteijn et al., 2012). In the present study, we use a recent version of
the EBM that is based on a non-parametric mixture modeling approach allowing the modeling
of biomarkers that do not necessarily follow a parametric distribution (Firth et al., 2020). The
probability of an event for each biomarker is determined by a Kernel Density Estimation
mixture model (KDE-EBM) where the normal (controls) and abnormal (patients) components
are KDE components (with Gaussian kernels). The model output is the average maximum-
likelihood sequence over all individuals providing inference at the group-level.

5.1.2.5 Biomarkers

The brain tissue volumes of the preterm (PT) and full-term (FT) groups were used as input
biomarkers for the KDE-EBM model including cortical gray matter (CGM), white matter (WM),
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subcortical gray matter (SGM), cerebellum (CB), cerebrospinal fluid (CSF) and brainstem
volume.

All brain tissue volumes were normalized by the intracranial brain volume prior to any subse-
quent analysis. Figure C.1 in Appendix C shows the boxplots of the brain development at TEA
for the two groups. Statistically significant differences between the two groups (PM, FT) were
only observed for the white matter, CSF and Brainstem brain volumes. The p-values of the
t-tests are reported in Table C.2 in Appendix C.

Following the model fitting, the estimated model sequence of events defines the disease pro-
gression of prematurity i.e., a fine-grained estimation of the sequence of the brain volumetric
abnormality changes in prematurely-born infants at term-equivalent-age (TEA).

5.1.2.6 Cross-validation

To quantify the robustness of the sequence we performed Stratified K-Folds cross-validation.
We repeated the estimation of the model (including the event distributions and maximum
likelihood sequence) using 10 Stratified K-Folds, preserving the percentage of samples for
each group. Sequence robustness was quantified based on the cross-validated similarity of
the sequence defined in terms of the average Hellinger distance between folds.

5.1.3 Results

5.1.3.1 Events ordering

In this section, we report the results of the event-based model (KDE-EBM).

Figure 5.1 shows the model-estimated fine-grained sequence as well as the uncertainty in the
sequence, corresponding to cumulative deficits in imaging-based brain volumetric data at
term-equivalent-age (TEA). We present event-based model results as positional density heat
maps (positional variance diagrams). A positional density heat map shows the posterior distri-
bution of events and their position in the most likely sequence (Fonteijn et al., 2012). In these
heat maps, regions with high density correspond to high confidence in the ordering, appearing
as a dark diagonal pattern. On the other hand, regions with lower density correspond to lower
confidence in the ordering meaning that some events are likely to occur concurrently as far as
the model can infer from the input data. Lower confidence corresponds to the off-diagonal
blocks/elements of the heat maps.
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Figure 5.1 – Positional variance diagrams of the event orderings obtained with KDE-EBM. Top:
The estimated maximum likelihood sequence of the disease progression in prematurity. Bot-
tom: The cross-validated sequence using 10 stratified folds. Green-white intensity represents
the proportion (0 in white, 1 in dark green) of the posterior samples in which events (y-axis)
appear in a particular position (x-axis) in the sequence.
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We are confident in the robustness of our findings due to the high cross-validation similarity
of the event sequence (CV S = 0.90) as shown in Figure 5.2. Our results suggest that the
tissue volume abnormalities of the white matter (WM) and CSF occur first followed by the
cortical gray matter (cortical GM) and cerebellum, and finally by the subcortical gray matter
(subcortical GM). Additionally, we observe a slight uncertainty in the ordering between cortical
GM and cerebellum, and WM and CSF volumes as shown in Figure 5.1.

To quantify the robustness of the sequence (Figure 5.1), we repeated the estimation of the
model using 10 Stratified K-Folds preserving the percentage of samples (subjects) for each
group. The sequence robustness is shown in Figure 5.2 and it is quantified using the cross-
validated similarity of the sequence defined as the average Hellinger distance between folds,
per event i.e. row of positional variance diagram.

Finally, the individual event probabilities of each input biomarker are presented in the Supple-
mentary Material (see Figure C.2 in Appendix C).

Figure 5.2 – The cross-validation similarity (CVS) of the sequence quantifying the robustness
of the estimated sequence. CVS is defined in terms of the average Hellinger distance (CV S =
1°H 2) across folds per event (row of the position variance heat map).

5.1.4 Discussion

Neurodevelopment is a dynamic process, that can be related to disease progression, charac-
terized by large macroscopic changes where brain abnormality compensation mechanisms
are highly present (brain resilience) (Young et al., 2020; de Silva et al., 2020; Taylor et al., 2019).
Conditions such a preterm birth may change the dynamic process of neurodevelopment and
lead to adverse neurodevelopmental outcomes. In fact, several studies have reported motor,
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cognitive, and language difficulties as well as behavioural or attention problems, related to
preterm birth (Aarnoudse-Moens et al., 2009; Moore et al., 2012; Larroque, 2004; Barnes-Davis
et al., 2020). Furthermore, these deficits may persist throughout childhood and even ado-
lescence and therefore can significantly impact the quality of life of these preterm infants
(Mulder et al., 2009; Favrais and Saliba, 2019; Lindstrom et al., 2011). Although cerebral cortex
alterations due to prematurity have been previously extensively studied (Dewey et al., 2019;
Karolis et al., 2017; Alexander et al., 2019; Gui et al., 2019; de Almeida et al., 2021; Inder, 2005),
the exact sequence of brain abnormality underlying preterm birth has never been investigated.
Understanding the sequence of biological events along the course of prematurity provides
insights into the underlying pathophysiology and can help intervention selection and setup.
Thus, early characterization of prematurity progression is extremely important for parent
counseling and early intervention to prevent severe delay through resilience.

To our knowledge, this is the first study to characterize the progression signatures of prematu-
rity using a generative, probabilistic, data-driven method. The estimated model sequence of
events defines the disease progression of prematurity that is, the fine-grained estimation of
brain volumetric abnormality sequence in prematurely-born infants at term-equivalent-age
(TEA). The event sequence obtained with the KDE-EBM algorithm showed that brainstem
biomarker became abnormal first. The abnormalities of the white matter (WM) and CSF are
the next events to occur followed by the cortical gray matter (cortical GM) and cerebellum, and
finally by the subcortical gray matter (subcortical GM) biomarker. Moreover, there is a small
uncertainty in the ordering between cortical GM and cerebellum, and WM and CSF volumes
as shown in Figure 5.1. However, we are confident about our findings given that the estimated
sequence is robust as assessed by the cross-validated similarity measure (C SV = 0.90).

Higher prevalence corresponds to an earlier position in the estimated sequence. Thus, our
findings suggest that the first brain volumetric alterations occur in the brainstem and WM
(early events) whereas, volumetric alterations in the cerebellum and subcortical gray matter
volumes come last (last events). CSF and cortical GM volumetric alteration are estimated to
occur in the middle of the prematurity sequence (between early and last events). A recent
study explored the role of cerebellar and brainstem dysfunction in preterm infants compared
to full-term newborns. It was reported that premature infants had smaller left and right
cerebellar hemispheres and impaired growth of the brainstem compared to the control in-
fants. Furthermore, these alterations in cerebellar and brainstem development persisted
at term-equivalent-age. It was thus concluded that prematurity alters the development of
the cerebellum and brainstem following early extrauterine exposure (Wu et al., 2020). The
brainstem is almost entirely mature at the end of the second / beginning of the third trimester
and is responsible for the regulation of heart rate, breathing, sleeping, and eating. It also
plays an important role in cardiovascular system control, respiratory control, pain sensitivity
control, alertness, awareness, and consciousness (Machado and Brody, 1988; Ikeda et al., 2016;
Benarroch, 2018; Fernández-Gil et al., 2010). On the other hand, the cerebellum grows rapidly
during late gestation and its surface area is increased 30-fold during the last 15 weeks of gesta-
tion. Furthermore, the cerebellum is responsible for the coordination of voluntary movement
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(Manto et al., 2011) and abnormalities in this region have been linked to behavioral and social
dysfunctions in premature infants survivors (Limperopoulos et al., 2007). Thus, alterations in
these key brain regions may lead to adverse behavioural and motor outcomes. Furthermore,
larger cortical grey and white matter volumes (CGM, WM) have been associated with better
cognitive and language developmental outcomes at 2 years of age in preterm-born children
(Kelly et al., 2020) and white matter microstructural alterations have been associated with
adverse neurological and behavioural performance at TEA in infants born preterm (Kelly et al.,
2018). Moreover, WM, cortical GM, and cerebellum have been shown to be good indicators
of neurodevelopmental outcome in preterm infants (Keunen et al., 2016). Therefore, early
volumetric alterations of brain regions may contribute to the developmental deficits observed
later in life in premature-born children.

The model recovered meaningful progression signatures of prematurity that might be of
clinical use allowing more targeted early interventions aiming to restore or even prevent the
adverse outcomes observed in preterm-born populations.

5.1.5 Conclusion

In this study, we employed a probabilistic model to unveil, for the first time, the disease
progression of prematurity. The estimated ordering of events (sequence) suggested that the
first biomarker to become abnormal is the brainstem and white matter whereas the last
biomarkers are the cerebellum and the subcortical gray matter. Individually, all these brain
volumes have been shown to be altered by prematurity however, there has not been any
study that has previously tried to characterize the ordering/sequence (in a probabilistic sense)
of these abnormalities. Finally, future research needs to address the reproducibility of the
findings in a population of preterm-born children or adults to investigate whether the specific
event ordering (disease progression) persists into childhood and/or adulthood, or whether
brain resilience and compensation mechanisms have reversed the damage.

Limitations

Modeling neurodevelopment comes with challenges, such as the rapid and diverse changes
that occur in early-life brain development as well prematurity brain compensation mecha-
nisms such as brain resilience. This constitutes a major limitation of this study given that
there are two underlying assumptions of the model. First, the disease progression is assumed
to be monotonic meaning that the change of biomarkers can only be towards abnormality,
which represents the disease progression. However, in reality, prematurity is also characterized
by brain compensation mechanisms that restore or persist brain damage and abnormality.
Second, the disease progression direction is also assumed to be irreversible which again might
not be completely true since brain resilience provides a natural way for reversing abnormality.
Taken all these into account, the interpretation of these novel findings should be performed
with caution.
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Supportive Information

All codes used in this study for the disease progression modeling is available on the following
repository: https://github.com/seralouk/preterm_ebms_open.
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Abstract

Spectral graph theory has been widely used to explore network characteristics of the functional
connectomes at the system level providing novel insights into brain functioning and orga-
nization. Recent studies have shown that the human brain is characterized by a large-scale
modular and cortical gradient-based organization. However, in most cases, the functional
connectome is constructed based on a subjective, non-trivial choice of a predefined brain
parcellation scheme due to the high dimensionality of the fMRI data that prohibits the con-
nectomic analysis at the voxel level. In this work, we introduce a framework for the estimation
of the Laplacian and the modularity spectrum at the voxel level. We validate our framework
on 40 subjects from the Human Connectome Project. Our results indicate the presence of
both functional gradients and community structure at the voxel level revealing fine-grained,
dominant connectivity patterns (eigenmodes). We show that the spatial configuration of
known intrinsic RSNs is not random but instead a natural spatial ordering for these networks
is provided by the leading eigenvectors of the Laplacian and modularity matrices. Finally, the
proposed framework enables the characterization of the brain’s fundamental organizational
principles at the voxel level, without the need for a parcellation scheme.

Keywords: Network science, Modularity, Functional connectivity, Laplacian, Connectomics
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List of notations:

• A: matrix, bold capital letter.
• x: column vector, bold small letter.
• m or N : scalar, small or capital letter.

5.2.1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) enables the measurement of
spontaneous fluctuations of brain activity during rest. These fluctuations are organized in
terms of consistent large-scale functional networks across healthy subjects (Damoiseaux et al.,
2006). To explore these functional networks, graph and network-based approaches have been
traditionally employed. These networks are also known as “connectomes", a representation of
the brain wiring, which holds important information related to brain organization and func-
tioning (Sporns et al., 2005; Fornito et al., 2015). Disease propagation patterns are constrained
by the highly organized topology of the underlying neural architecture, i.e. the connectome.
Therefore, a connectomic approach can be essential to understand neuropathology (Fornito
et al., 2015) as well as to explore the topological properties of the underlying network. Each
vertex in these networks represents a brain region while each edge reflects the statistical inter-
dependence of two vertices, i.e., the functional connectivity between the brain regions (Sporns,
2011; Bullmore and Sporns, 2009). This interdependence is often measured as the Pearson
correlation between the regionally averaged voxel blood-oxygen-level-dependent (BOLD)
signals, however, alternative functional connectivity measures such as the cross-correlation,
coherence, and accordance/discordance have been also introduced (Mohanty et al., 2020;
Meskaldji et al., 2015b).

Over the past decade, the investigation of graph theoretical metrics of the functional connec-
tomes has revealed interesting and important network-related global characteristics of the
human brain. The most common local graph metrics that characterize the properties of the
individual nodes include the local clustering coefficient, nodal degree, global/local network ef-
ficiency, and characteristic average path length (Rubinov and Sporns, 2010). To explore global
aspects of the network organization, such as small-world (high clustering coefficient and short
path length) (Watts and Strogatz, 1998; Bassett and Bullmore, 2016), rich-hub (van den Heuvel
and Sporns, 2011) and scale-free (Eguíluz et al., 2005) underlying organization, averaging of
these nodal metrics is often performed to characterize the network as a whole.

Recently, the number of studies employing spectral graph theory in order to explore global
brain network characteristics at the system level, and to complement the aforementioned
standard graph theoretical metrics, has increased. Spectral graph theory provides novel
insights into brain functioning capturing global network aspects that would not have been
detected by conventional graph theoretical metrics (Atay et al., 2006). This information is
often expressed on the basis of the eigenvectors of fundamental matrices of the underlying
network. One such spectral measure is the eigenvector centrality, a measure of the influence
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of a node in a network that is based on the leading eigenvector of the adjacency matrix (A)
(Lohmann et al., 2010; Joyce et al., 2010; Markett et al., 2015). Moreover, the eigenvectors of
the graph Laplacian or the modularity matrix have been widely used for graph partitioning
and community detection purposes (Newman, 2004; Fortunato, 2010). Graph partitioning
refers to the division of the nodes of a network into several groups while keeping the number
of edges running between the groups minimal (Newman, 2004). Two widely used methods for
graph partitioning is the spectral bisection method (Fiedler, 1973; Chung, 1996; Pothen et al.,
1990), which is based on the eigenvectors of the graph Laplacian (L) and the modularity-based
community detection that is based on the leading eigenvectors of the modularity matrix (B)
(Newman, 2006b,a). Interestingly, using spectral graph theory approaches, novel insights into
the brain topography and function have been reported such as its modular structure (Mahon
and Cantlon, 2011; Yeo et al., 2014; Kabbara et al., 2019; Zhigalov et al., 2017; Sporns and Betzel,
2016), its large-scale cortical gradient organization (Margulies et al., 2016) and the existence of
connectome harmonics that emerge from the brain’s structural connectivity and constrain the
functional connectivity of the brain (Atasoy et al., 2016; Naze et al., 2021; Das et al., 2014).

While these studies have provided valuable insights into brain topological organization and
function, in most of them, the full dimension of the fMRI data is not exploited due to the high
spatial resolution of the fMRI data that prohibits the connectomics analysis at the voxel level
(ª 1010 matrix entries considering only brain gray matter voxels ª 105). Thus, a whole-brain
network-based analysis at the voxel level is usually not feasible. To overcome this limitation,
the brain is usually parcellated into a set of regions based on a predefined atlas, or the high
dimensional fMRI data are reduced using dimensionality reduction or sampling techniques.
However, it should be noted that there is no gold standard solution to this issue and that
different parcellations can impact notably the brain network structure and connectome-based
metrics (Bellec et al., 2015; Wang et al., 2009; de Reus and van den Heuvel, 2013).

Due to the aforementioned limitations, only a small number of studies have tried to explore
the functional connectivity at the voxel level using spectral graph theory approaches. First,
Wink and colleagues introduced a framework for the fast computation of the eigenvector
centrality (EC) measure of functional networks, enabling the fine-grained analysis of brain
hubs (measured by functional connectivity) at the voxel level (Wink et al., 2012). The EC
reflects the influence of a node and is defined on the basis of the leading eigenvector of the
adjacency matrix. Similarly, other studies have explored the EC of the functional networks at
the voxel level, opening a new research window in the neuroscience field (Markett et al., 2015;
Lohmann et al., 2010; Joyce et al., 2010). Interestingly, voxel-level eigenvector centrality studies
have revealed disease-related changes of functional network properties (McCarthy et al., 2014),
and alterations in the known resting-state networks (Buckner et al., 2009). Furthermore,
based on the fast eigenvector centrality framework at the voxel level (Wink et al., 2012), Preti
et colleagues (Preti and Van De Ville, 2017) provided a technical solution for data-driven
analysis of dynamic functional connectivity (dFC) at the voxel level, revealing dFC long-range
interactions and fine-scale organization in terms of meaningful brain subdivisions. Therefore,
spectral graph theory and connectomics analysis at the voxel level can provide valuable
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insights into brain function and organization however, up to date, no study has proposed a
solution for the estimation of the laplacian and modularity spectra at the voxel level using
resting-state fMRI data.

In this paper, we introduce a novel framework that enables the fast, implicit estimation of
the laplacian and modularity spectra at the voxel level exploiting the full dimension of the
resting-state fMRI data. To obtain a valid adjacency matrix, we split the resting-state BOLD
signals into their positive and negative parts, and we then build two adjacency matrices by indi-
vidually estimating the covariance of these parts. This is closely related to the accordance and
discordance measures that are based on the modeling of the extreme activation-deactivation
events/intervals of the brain activity (Meskaldji et al., 2015b).

The present paper is organized as follows. First, we provide a brief overview of the graph
partitioning concept using the graph Laplacian (L) and modularity matrix (B). Next, we
describe and formulate our proposed framework for the implicit estimation of both Laplacian
and modularity spectra at the voxel level. Furthermore, we validate our framework on a
cohort consisting of 40 subjects from the publicly available Human Connectome Project
(Human Connectome Project, 2020). Finally, we illustrate that the Laplacian and modularity
eigenmodes unveil topological properties of the human brain confirming the presence of both
modular and functional gradient organization at the voxel level.

5.2.2 Methods

5.2.2.1 Graph partitioning

The problem of graph partitioning refers to the division of a network’s nodes into c groups of
approximately equal size, while minimizing the cut size (R) that is, the number of edges that
run between nodes of different groups. Traditionally, most graph partitioning approaches are
based on iterative bisection i.e., first finding the best division of the network into two groups
and then further subdividing those groups until the desired number of groups is reached. One
of the most widely used methods for the graph partitioning problem is the spectral bisection
method that is based on the eigenvectors of the graph Laplacian matrix (Fiedler, 1973; Barnes,
1982).

The mathematical formulation of the spectral bisection method is derived as follows. Given
an undirected network G (graph) with n nodes (vertices), the graph Laplacian matrix is a real,
symmetric matrix defined as L = D°A where A is the adjacency of the network and D is the
degree matrix. We consider a specific partition of the network into two groups encoded by
the index vector s such as si = 1 and si = °1 if node i belongs to the first or second group,
respectively. The index vector is satisfies the normalization condition sTs = n. The cut size R
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of the partition of the graph can be therefore expressed as (Newman, 2006a; Fortunato, 2010)

R = 1
2

X

i , j
si 6=s j

ai , j =
1
2

X

i , j

µ
1° si s j

2

∂
ai , j =

1
4

s>Ls (5.2)

By expressing the vector s as a linear combination of the normalized eigenvectors ui of L so
that s =Pn

i=1 wi ui with wi = uT
i s, Equation 5.2 becomes

R =
nX

i=1
w2

i ∏i , (5.3)

where ∏i is the eigenvalue corresponding to eigenvector ui of the graph Laplacian matrix (L).

Minimizing the cut size

The minimization of the cut size (R) is equivalent to the minimization of the sum term of
the equation 5.3 however, this is a NP-hard problem (Fortunato, 2010). A relaxed solution
is provided by the smallest non-zero eigenvector of the graph Laplacian matrix. In more
detail, the minimum cut can be achieved by choosing s to be parallel to the smallest non-
zero eigenvector (u2) which is known as the Fiedler vector (Fiedler, 1973) however, the index
vector s cannot be perfectly parallel to u2. Instead, by setting si = +1 if the corresponding
element of u2 is positive and si =°1 otherwise, the index vector becomes proportional to the
Fiedler vector minimizing the sum term (Fortunato, 2010). Finally, the relaxed solution of the
minimization problem in the case of k arbitrary groups of nodes is given by choosing the first
k eigenvectors of L that correspond to the smallest non-zero eigenvalues (von Luxburg, 2007).

5.2.2.2 Modularity and Community structure

The main limitation of the spectral bisection method is that it does not provide information
about the number of groups/communities that the underlying network should be split into.
To overcome this limitation Newman and Girvan (Newman and Girvan, 2004; Newman, 2004)
proposed a subdivision method that is based on the quantification of how good a particular
division is. A way to quantify the true community structure in a network is the modularity
measure (Q) that reflects the number of edges falling within groups minus the expected
number in an equivalent network with edges placed at random (Newman and Girvan, 2004;
Newman, 2006b). Q can be either positive or negative reflecting the presence of community
structure or not, respectively (Newman, 2006b).

The mathematical formulation of modularity is derived in the following way. Given a network
G (graph) with n nodes (vertices) and a specific partition of the network into two groups, let
si = 1 and si = °1 if node i belongs to the first group or to the second group, respectively.
Furthermore, the observed number of edges between two nodes i , j is given by the element
Ai j of the adjacency matrix A of the network and, at the same time, the expected number
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of edges between node i and j is ki k j /2m, where m = 1
2
P

i ki is the total number of unique
edges in the network and ki is the degree of node i (or the strength in the case of a weighted
network) (Newman, 2006b). Observing that ±(gi , g j ) = 1

2 (si s j +1) is equal to 1, if i , j belong to
the same group and 0 otherwise, the modularity measure Q is defined as (Newman, 2006b)
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The matrix form of the modularity measure (Q) is defined as

Q = 1
4m

sT Bs, (5.5)

where s is an index vector encoding the grouping information of node si for i = 1, . . . ,n and B
is the real, symmetric modularity matrix defined as

Bi j = Ai j °
ki k j

M
, (5.6)

where M = 2m =P
i j Ai j is a scalar.

One important property of the modularity matrix B is that it always has a zero eigenvalue with
corresponding eigenvector 1 2RN£1 since the elements of each row and column of B sum to
zero (Newman, 2006b). This is also a well-known property of the graph Laplacian matrix.

Finally, by expressing s as a linear combination of the normalized eigenvectors ui of B so that
s =Pn

i=1 wi ui with wi = uT
i s, the modularity measure (Q) can be written as
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where ∏i =
uT

i Bui

uT
i ui

is the eigenvalue of modularity matrix B corresponding to the eigenvector

ui . Note that, assuming normalized eigenvectors, we have ∏i = uT
i Bui .

Maximizing the modularity

The maximization of the modularity Q of a given network as defined in Eq. 5.7, involves the
selection of the largest (most positive) eigenvalue ∏1 of B and the maximization of the dot
product uT

1 s where u1 is the leading eigenvector of B with corresponding eigenvalue ∏1. It
should be noted that the index vector s cannot be constructed to be parallel to u1 but the
maximum is achieved by setting si =+1 if the corresponding element of u1 is positive and
si =°1 otherwise (when s is proportional to u1). Thus, by estimating the leading eigenvector
of the modularity matrix B, the signs of its elements provide a nodal grouping (network split)
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that maximizes the modularity measure Q. Finally, the presence of positive eigenvalues of B
signifies community structure in the underlying network (Newman, 2006b).

More than two communities

The previous section refers to the case where the modularity Q is maximized for a given split
of the network into two groups of nodes however, real-world networks are often characterized
by more than two communities. In that case, given an index matrix S with dimension [N ,C ]
where each column contains an index vector with elements in [0,1] range such as si j = 1 if
vertex i belongs to community j or 0 otherwise, the kronecker ± is now defined as ±

°
gi , g j

¢
=

Pc
k=1 Si k S j k and the modularity Q for a specific division of the network is
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where uj is an eigenvector of the modularity matrix B with corresponding eigenvalue ∏ j

(Newman, 2006a).

The maximization of Q is achieved by spectral clustering using the eigenvectors of the B with
the largest positive eigenvalues (Newman, 2006a).

5.2.2.3 Proposed framework & mathematical formulation

Functional connectome definition

Previous fMRI studies employed spectral graph theory approaches at the voxel level exploiting
the fact that the functional connectivity (FC) matrix (adjacency matrix) can be expressed
in a matrix form using the Pearson correlation as C = XXT/(T °1) with T being the number
of time-points and assuming z-scored voxel time-series stored in the rows of X (Wink et al.,
2012; Preti and Van De Ville, 2017). This enables the fast spectral estimation of the adjacency
matrix using iterative power methods and by performing the operations from right to left,
avoiding the explicit matrix multiplication that would generate C. However, such an approach
would not be valid for the laplacian and modularity spectral estimation since the adjacency
matrix (i.e. the FC matrix) would include both positive and negative values and thresholding
procedures cannot be performed without explicitly constructing the FC matrix, which cannot
be done due to the high dimension of the data. To overcome this problem, we propose to split
the resting-state BOLD signals into their positive and negative parts, and we define (implicitly)
two adjacency matrices by estimating the covariance of these parts.

Formally, let X 2 RN£T be a set of normalized (µ = 0,æ = 1) voxel time-courses, where N is
the number of brain gray matter voxels and T is the length of the time-course (time-points).
We first define two new matrices Xu 2RN£T and Xl 2RN£T with row vectors defined as xu =
{xu

t , t = 1, . . . ,T, xu
t = xt if xt ∏ 0} and xl = {xl

t , t = 1, . . . ,T, xl
t = xt if xt < 0} being the upper and

133



Chapter 5. Advanced models for neurodevelopment

lower thresholded vectors of the normalized time-course x of length T . Thus, it holds that
X = Xu +Xl.

We express the functional connectome by splitting the Pearson correlation as follows

C = XXT

T °1
= (Xu +Xl)(Xu +Xl)T

T °1

= (XuXu
T +XlXl

T +XuXl
T +XlXu

T )
T °1

= (XuXu
T +XlXl

T )
T °1

+ (XuXl
T +XlXu

T )
T °1

= Acc +Disc.

(5.9)

The accordance matrix (Acc) reflects co-activations/co-deactivations between the brain re-
gions, contributing to the positive correlations in FC, whereas the discordance matrix (Disc)
reflects opposition in co-activation and co-deactivation, contributing to negative correlations
in FC. These two matrices disentangling coupling and anti-coupling events, respectively and
are used as undirected, weighted adjacency matrices as described in the following sections.

The range of the values of the Acc and Disc matrices are [0,1] and [°1,0], respectively, and
the signs of Disc can be flipped using °Disc. Additionally, the two matrices can be written
in a matrix form as expressed in equation 5.9 allowing fast, non-explicit computations as
described in the following section. Finally, this approach is closed related to the accordance
and discordance measures that are based on the modeling of extreme activation-deactivations
of the brain activity (Meskaldji et al., 2015b,a).

Laplacian and Modularity definition at the voxel level

Laplacian

The symmetric, normalized Laplacian (Ls ym) matrix using Acc as adjacency matrix is defined
as

Ls ym = D° 1
2 LD° 1

2 = I°D° 1
2 AccD° 1

2 , (5.10)

where Acc is the accordance matrix defined in Eq. 5.9 and D is the strength diagonal matrix
defined as

di ag (D) = Acc1 = XuXu
T

T °1
1+ XlXl

T

T °1
1. (5.11)

Similarly, the graph Laplacian matrix (Ls ym) using Disc as adjacency matrix (see Eq. 5.9) can
be formulated.

Modularity

The modularity matrix (B) using Acc as adjacency matrix is defined as

B = Acc °
kkT

M
, (5.12)

134



5.2. Journal Preprint: A new framework for high-resolution spectral analysis of
resting-state fMRI functional connectivity

where M = 2m =P
i ki =

P
(Acc1) is a scalar, and k is the strength vector defined as

k = Acc1 = XuXu
T

T °1
1+ XlXl

T

T °1
1, (5.13)

with 1 being a column vector with all ones.

Using Eq. 5.9 and Eq. 5.13, the modularity matrix B using accordance matrix as adjacency can
be expressed as

B = (
XuXu

T

T °1
+ XlXl

T

T °1
)°

( XuXu
T

T°1 1+ XlXl
T

T°1 1)( XuXu
T

T°1 1+ XlXl
T

T°1 1)T

M
. (5.14)

Similarly, the modularity matrix (B) using Disc as adjacency matrix (see Eq. 5.9) can be formu-
lated.

Estimation of the spectra

Laplacian

To estimate the spectrum (eigenvalues ∏ and eigenvectors v) of the symmetric, normalized
Laplacian matrix (Ls ym) we express the eigendecomposition problem as follows

Ls ymv =∏v,

(I°D° 1
2 AccD° 1

2 )v =∏v,

Iv°D° 1
2 AccD° 1

2 v =∏v,

(5.15)

with Acc being the accordance matrix as defined in Eq. 5.9.

The operations are performed from right to left, avoiding matrix multiplications. Thus, only
matrix-vector products are involved in the estimation. Note that D° 1

2 is a diagonal matrix and
thus, the dot product D° 1

2 v in Eq. 5.15 is equivalent to a vector-vector multiplication. Thus,
we express D° 1

2 as a column vector by first estimating the strength vector (see Eq. 5.11) and
then taking the square root and inverting it. Next, the product D° 1

2 v results in a vector that is
going then to be multiplied by Acc (see Eq. 5.9) performing the operations from right to left.
Finally, it is trivial that Iv = v.

The eigendecomposition problem of the normalized Laplacian matrix using °Disc as the
adjacency matrix can be formulated similarly.

Modularity

Similarly, to estimate the spectrum (eigenvalues∏ and eigenvectors v) of the modularity matrix
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(B) we express the eigendecomposition problem as follows

Bv =∏v,

(Acc °
kkT

M
)v =∏v,

Accv° kkT

M
v =∏v,

(5.16)

with

Accv = XuXu
T

T °1
v+ XlXl

T

T °1
v. (5.17)

and
kkT

M
v =

( XuXu
T

T°1 1+ XlXl
T

T°1 1)( XuXu
T

T°1 1+ XlXl
T

T°1 1)T

M
v. (5.18)

All the terms in Eq. 5.17 and Eq. 5.18 are computed from right to left avoiding matrix multi-
plications. For instance, in Eq. 5.18 we start with k (see also Eq. 5.13) by first estimating the
term XT

l 1 which results in a vector and we then continue performing the operations from
right to left, to eventually obtain the strength vector k. Having estimated k, the operation kTv
results in a scalar and k(kTv) is a multiplication of a vector with a scalar. Similarly, to estimate
the term Accv in Eq. 5.17 we first start by estimating the term XT

l v which is a matrix-vector
multiplication resulting in a vector and we then proceed with Xl(XT

l v) etc.

Finally, the eigendecomposition problem of the modularity matrix (B) using Disc as the adja-
cency matrix can be formulated similarly.

In this study we used the ARPACK library in Python 3.8 to estimate a subset of the spectra in a
fast, iterative way; we chose M = 1000 (ARPACK Software, 2020).

5.2.2.4 Framework validation

To validate the proposed framework we used data from the publicly accessible Human Con-
nectome Project data release.

Subjects and fMRI Acquisition

In the present study we included n = 40 healthy subjects from the Human Connectome Project
(Essen et al., 2013) 900 subjects release (S900, HCP, Human Connectome Project (2020)). All
experiments were reviewed and approved by the local institutional ethical committee (Swiss
Ethics Committee of human research). Informed consent forms, including consent to share
anonymized data, were collected for all subjects (within the HCP project) and were approved
by the Washington University institutional review board. All methods were carried out in
accordance with relevant guidelines and regulations. Subjects were selected from the HCP
S900 data release based on the following criteria: Age between 31 and 35 years old, cognitive
MMSE status >28 and image reconstruction information = 3T MR r227.
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Both runs of the two resting-state gradient-echo EPI sequences (1200 frames per run, TR =
720 ms, TE = 3.31 ms, flip angle = 52 deg, FOV = 208 £ 180 mm, voxel size = 2 mm isotropic,
multiband factor = 8) (Moeller et al., 2010; Feinberg et al., 2010; Setsompop et al., 2011) as well
as the structural 3D MPRAGE T1-weighted sequence (TR = 2400 ms, TE = 2.14 ms, TI = 1000,
flip angle = 8 deg, FOV = 224 £ 224 mm, voxel size = 0.7 mm isotropic) were included in the
analysis presented in this paper.

Preprocessing

The HCP public data release includes neuroimaging data that are already minimally pre-
processed. In more detail, the data have been aligned across modalities (functional and
structural) and have been wrapped across all subjects to the Montreal Neurological Institute
(MNI) standard space using appropriate volume-based and surface-based registration meth-
ods. Spatial distortions were also minimized (Glasser et al., 2013). Additionally, we applied
spatial smoothing on the functional volumes (using a Gaussian kernel of FWHM = 5 mm)
using SPM12 (Statistical Parametric Mapping, 2020). The first ten volumes were discarded
to ensure steady-state magnetization of the fMRI signals, resulting in T = 1190 time-points
(functional volumes) per run for further analysis.

Voxel-wise time-courses were detrended (by removing linear and quadratic trends) and nui-
sance variables were regressed out using the DPARSF toolbox (Yan, 2010). The nuisance
regression procedure included the six motion parameters (3 for rotation and translation, re-
spectively) and the average white matter (WM) and cerebrospinal fluid (CSF) signals, obtained
from standard white matter and ventricular masks mapped to the subjects’ fMRI space and
masked with the individual segmentation maps (Leonardi et al., 2013). The voxel-wise time-
courses were finally band-pass filtered (range [0.015–0.15 Hz]) to preserve resting-state related
fluctuations and discard noise components. Finally, to restrict the analysis to brain voxels
that belong exclusively to the gray matter (GM), the SPM12 GM tissue probability map (TPM)
was first thresholded by removing voxels with low probability belonging to the GM tissue
(P(GM voxel) <0.25) ensuring a fine-grained GM coverage of the brain. Next, the GM mask was
resliced to the fMRI BOLD space resolution in order to extract GM voxel-wise time-courses
for each subject. The GM mask used in the present study is shown in Fig. 5.3. In this study,
the number of GM voxels is N = 1590459. The aforementioned preprocessing procedure was
identical for both resting-state runs.

Group-level spectral estimation at the voxel level

Having obtained the preprocessed, z-scored, time-courses at the voxel level for each subject
and run, a group-level matrix XG was constructed by concatenating the voxel-wise time-
courses across subjects and runs. The group-level matrix, XG 2RN£T (with N = 1590459 voxels
and T = n £2£ run’s timepoints = 40£2£1190) was used to construct the matrices Xu,Xl as
described in Section 5.2.2.3. Fig. 5.4 summarizes the whole procedure. Finally, the dimension
of these two matrices is the same as XG.
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Figure 5.3 – The gray matter (GM) mask used in the present study, resliced and overlaid on the
functional volume of a single subject for visualization purposes. Using this mask, the number
of GM voxels is Nvoxel s = 1590459 per subject and run.

Using these matrices we can define the Accordance and Discordance (Acc,Disc) matrices as
defined in Eq. 5.9 and finally, the normalized Laplacian and modularity matrices (see Eq. 5.10
and Eq. 5.12). However, in reality none of these matrices were built explicitly. On the contrary,
using the proposed framework for the non-explicit estimation of the spectra (see Eq. 5.15 and
Eq. 5.16 in section 5.2.2.3), we estimated a subset of the laplacian and modularity spectra
in two different cases: first, when the adjacency matrix was the Accordance matrix (Acc) and
second, when the adjacency matrix was the Discordance matrix (Disc).

The subsets of the spectra were estimated using the ARPACK library (ARPACK Software, 2020)
and choosing M = 1000. For the normalized Laplacian matrix, we estimated the M smallest
and largest eigenvectors for the case of Acc and Disc, respectively. Discordance captures anti-
coupling in brain activity and thus, in that case, we focused on the bipartite structure that
can be recovered from the spectrum. For the modularity matrix, we estimated the M leading
positive (reflecting community structure) and negative eigenvectors for the case of Acc and
Disc, respectively. We opted for the most negative eigenvectors when Discordance was used as
the adjacency to recover anti-modular information that is encoded in the spectrum (Newman,
2006b). We ended up with four matrices UL

acc, UL
disc, UB

acc, UB
disc with dimension [N , M ],

where N = 1590459 voxels and M = 1000, with columns being the laplacian and modularity
eigenvectors, respectively.
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Figure 5.4 – Framework’s pipeline. The group-level matrix (XG) was constructed by concate-
nating the z-scored voxel-wise time-courses across subjects and time. Next, the BOLD signals
were split into their positive and negative parts to build the (Xu) and (Xl) matrices. Finally,
these matrices were used for the spectral analysis at the voxel level as described in section
Proposed framework & mathematical formulation.

Exploring the spectra

Laplacian and modularity similarities

To explore similarities and differences between the estimated Laplacian (UL
acc, UL

disc) and
modularity (UB

acc, UB
disc) spectra at the voxel level, we used the cosine similarity metric. The

cosine similarity (CS) of two arbitrary vectors a and b is defined as:

C S = cos(µ) = ab
kakkbk =

Pn
i=1 ai bi

qPn
i=1 a2

i

qPn
i=1 b2

i

, (5.19)

where ai and bi are components of the vectors a and b, respectively.

The range of the cosine similarity is [°1,1]. For two vectors that are pointing in the same direc-
tion CS is 1, while for vectors pointing in opposite directions the CS is -1. Finally, orthogonal
vectors have CS equal to 0.
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Spatial configuration of large-scale networks

Finally, we investigated whether the estimated leading eigenmodes are associated with the
intrinsic spatial configuration of known resting-state networks (RSNs). To this end, we used
the seven and seventeen-network Yeo parcellations (Yeo et al., 2011) to examine the network’s
spatial arrangement with respect to the estimated brain eigenmodes.

5.2.3 Results

5.2.3.1 Group-level spectra at the voxel level

Using the proposed framework (as described in section 5.2.2.4), we estimated a subset (M =
1000) of the Laplacian and modularity spectra at the voxel level in two different cases: first,
when the adjacency matrix was the Accordance matrix (UL

acc and UB
acc) and second when the

adjacency matrix was the Discordance matrix (UL
disc and UB

disc). The average computation time
was 13.8±0.5h on an Ubuntu 18.04.2 LTS system (with 503G MEM and 96 Intel(R) Xeon(R)
Platinum 8160 CPU(s) @ 2.10GHz). In the case of the Laplacian spectrum using Accordance as
adjacency, the first eigenvector v1 = D

1
2 1 with corresponding eigenvalue ∏1 = 0 was excluded

from further analysis. The scree plots for the aforementioned cases are presented in Fig. 5.5.
Moreover, the leading eigenvectors of the Laplacian and modularity matrices are presented in
Fig. C.4 and Fig. C.3 in Appendix C.

To investigate similarities and differences between the estimated Laplacian and modularity
spectra at the voxel level, we used the cosine similarity metric as described in section 5.2.2.4.
The absolute values of the cosine similarity between the eigenvector matrices UB

acc and UL
acc

as well as between UB
disc and UL

disc are presented in Fig. 5.6 (a) and (b), respectively. Finally,
the cosine similarities between UB

acc and UB
disc, and UL

acc and UL
disc are shown in Fig. C.5 in

Appendix C.
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(a) Scree plot of Ls ym using Acc and Di sc

(b) Scree plot of B using Acc and Di sc

Figure 5.5 – The scree plots of the Laplacian (a) and modularity (b) spectra using Accordance
(left) and Discordance (right) as adjacency, respectively. In the case of Laplacian with Accor-
dance, the smallest eigenvalue i.e. ∏1 = 0 is discarded for visualization purposes.

Finally, we examined the relationship between the spatial arrangement of the seven Yeo RSNs
and the estimated Laplacian and modularity leading eigenmodes. Fig. 5.7 illustrates that there
is indeed a relationship and that the spatial configuration of the seven Yeo RSNs is not random
with respect to the estimated Laplacian and modularity leading eigenvectors. Similarly, the
results for the seventeen-network Yeo parcellation are presented in Fig. C.6 in Appendix C.
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(a) Absolute value of the cosine similarity between U B
acc , U L

acc

(b) Absolute value of the cosine similarity between U B
di sc , U L

di sc

Figure 5.6 – Cosine similarity between the spectra: (a) and (b) show the absolute value of the
cosine similarity of the eigenvectors when the adjacency was the Accordance or Discordance
matrix, for the Laplacian and modularity matrix, respectively.

142



5.2. Journal Preprint: A new framework for high-resolution spectral analysis of
resting-state fMRI functional connectivity

Figure 5.7 – The Laplacian principle gradient’s values (top) and the modularity leading eigen-
vector’s values (bottom) for each of the seven Yeo resting-state networks. For the sake of
simplicity, here we visualize only the results based on the Accordance as adjacency matrix.
The asterisks represent mean values. Colors represent the exact same colors used to describe
the networks in Yeo et al. (2011).
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5.2.4 Discussion

It is known that the spontaneous fluctuations of brain activity during rest form consistent
large-scale functional networks with specific spatial configuration across healthy subjects
(Damoiseaux et al., 2006; Yeo et al., 2011). Moreover, each of these resting-state networks
(RSNs) has been characterized by a unique functional profile (functional specialization) (Smith
et al., 2009). This specialization has been shown to range from basic primary functions (e.g.,
movement and auditory/visual perception) to higher-order cognitive control (e.g., atten-
tion control, working memory demand) (Smith et al., 2009; Petrides, 2005; Rossi et al., 2008;
Cole et al., 2012), to finally, even more, abstract demand-free cognitive states such as mind-
wandering (Raichle, 2015).

While the spatial configuration (topography) of these RSNs has been previously accurately
described (Damoiseaux et al., 2006; Yeo et al., 2011), only recently studies have tried to explore
the principles underlying this spatial configuration and its relation to function for each net-
work. Using a diffusion embedding technique that captures the differentiation of functional
connectivity patterns, a principal large-scale gradient of organization in the human cortical
surface has been recently described (Margulies et al., 2016). This gradient extended between
primary unimodal sensorimotor areas and transmodal association regions (i.e., regions of
the DMN) and it was related to the intrinsic geometry of the cortex, as well as to the spatial
arrangement of the well-known RSNs (Margulies et al., 2016). Thus, this gradient provided
a functional organizational principle that expanded between sensorimotor and transmodal
regions. However, in that study the compressed group-averaged connectome derived via
group-PCA was used and the data were sampled onto a cortical surface with approximately
32’000 nodes after zeroing out negative values explicitly. Moreover, only approximately 300
leading eigenvectors were estimated. In the same context, using seed-based connectivity
and a multidimensional scaling technique, it has been shown that the intrinsic functional
connectivity of the human brain is organized as three main interdependent gradients (Zhang
et al., 2019). The first functional gradient was found to capture a functional contrast between
regions that are involved in processing external and internal information. The second gra-
dient captured a contrast between regions implicated in attention modulation and content
representation, while the third gradient was characterized by a structural contrast between
spatially central and peripheral nodes. Moreover, an interdependence of these connectivity
gradients was revealed (Zhang et al., 2019).

While these studies have provided valuable insights into the brain topological organization,
the full dimension of the neuroimaging data has not been exploited due to the high spatial
resolution of the fMRI data that prohibits connectomic and spectral graph theory analyses
at the voxel level. Importantly, studies employing brain parcellation schemes to reduce
the dimension of the data assume that the brain can indeed be separated by sharp and
strict boundaries. Furthermore, methods that have explored the brain’s large-scale cortical
organization, such as the diffusion embedding approach, imply smooth underlying structure
(Margulies et al., 2016; Huntenburg et al., 2018).
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Here, we proposed a novel framework that enables the fast, implicit estimation of the graph
Laplacian and modularity spectrum at the voxel level exploiting the full dimension of the
resting-state fMRI data. The Laplacian and modularity are the theoretically optimal for the
‘gradient-based’ and ‘specialization’ organization principles, respectively, that have been
previously described in the literature (Wang et al., 2014; Margulies et al., 2016; Smith et al.,
2009; Zeki et al., 1991). In the present study, we explored these two fundamental organizational
principles via spectral graph theory at the voxel level.

Even though the eigenvectors of the Laplacian and modularity matrices provide optimal
solutions to different optimization problems – namely to the minimization of NCut and
maximization of the modularity Q, respectively – our results show that the two spectra at the
voxel level are virtually identical (see Fig. 5.6). This similarity is also depicted on the spacial
configuration of the leading Laplacian and modularity eigenmodes (see Fig. C.3 and Fig.
C.4 in Appendix C). These findings suggest the presence of strong community organization
at the voxel level that results in large edge count within communities and small between
them, defining in that way, a gradient that is captured by the Laplacian eigenmodes. In
other words, these gradients (that gradually reduce as we move away from the center of a
community towards the gap between communities) agree with the corresponding modularity
splits and capture voxels that agree in terms of the spatial distribution of the connectivity
values. Therefore, based on your results, both types of organization are present at the voxel
level.

Additionally, the smoothness of the leading eigenvectors of the Laplacian matrix (see Fig.
C.3) provides more evidence of the presence of functional gradients at the voxel level. If
gradients were not present in the underlying network, the Laplacian eigenmodes would not be
expected to be smooth. Similarly, the modularity eigenmodes provide meaningful community-
based splits assembling known RSNs, such as the DMN, visual, auditory, and fronto-parietal
networks (see Fig. C.7).

Moreover, Fig. 5.7 illustrates that the spatial configuration of known intrinsic functional
networks is not random with respect to the estimated Laplacian and modularity leading
eigenvectors. Instead, we observe that voxel belonging to the same network are grouped
together i.e., they are represented by similar eigenvector values. This grouping places the
limbic, DMN, and frontoparietal networks at opposite sides along the gradient (induced by
the eigenvector entries) compared to the somatosensory, visual, and dorsal/ventral attention
networks. Thus, both the Laplacian and modularity leading eigenvectors provide a natural, in-
trinsic spatial ordering for these large-scale networks and this ordering distinguishes between
primary and multimodal cortical regions. These results are in line with the cortical surface
gradients described by Margulies et al. (2016). Finally, the results for the seventeen-network
Yeo parcellation case are presented in Fig. C.6 in Appendix C. Taking all these into account, our
findings verify the presence of both community structure and functional gradient organization
at the voxel level.
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Finally, the modularity and Laplacian spectral information based on the Accordance and
Discordance seems to agree in terms of the spatial connectivity patterns (see Fig. C.4, Fig. C.3,
and Fig. C.5 in Appendix C). This is also evident from the scree plots (Fig. 5.5). A possible
explanation could be that accordance and discordance measures reinforce one other. For
pairs of voxel time- courses the accordance measure is high, the discordance measure is low
and vise versa. Therefore, Discordance captures anti-modular (in the case of modularity) and
bipartite (in the case of the Laplacian) information that pushes communities away from each
other and eventually converges to the same results as accordance measure.

5.2.4.1 Future extensions of the framework

One extension of the current work can be the integration of the resolution parameter (∞) into
the modularity criterion. Modularity works well in most situations however, it is unable to
detect community structure in large networks with many small communities. To overcome this,
a modified version of the standard modularity has been proposed. In that case, the modularity
matrix is defined as Bi j = Ai j ° (∞ ki k j )/M , where M = 2m =P

i j Ai j and ∞ 2 [0,1] (Reichardt
and Bornholdt, 2006). Smaller and larger values of the ∞ parameter favor the detection of larger
and smaller modules, respectively (Betzel et al., 2017; Newman, 2016). Another interesting
extension could be spectral clustering (SC). The eigenvectors of the Laplacian and modularity
matrices induce a low-dimensional representation for the data and can serve as inputs for
the clustering algorithm. SC does not presume any parametric form for the data and can
capture the natural underlying structure of the data (Venkataraman et al., 2009; Craddock et al.,
2012; von Luxburg, 2007). To this end, data-driven clusters at the voxel level can be obtained.
Furthermore, different null models in the modularity criterion can be used. For instance, the
Bernoulli random model assumes an equal probability of appearance for all edges, preserving
the average degree (Newman, 2006a) while other null models account for the correlation
between degrees of nodes (Newman, 2002). Moreover, the configuration model used in this
study can be modified to exclude self-loops (Massen and Doye, 2005). Finally, to model extreme
co-activations/co-deactivations and oppositions of brain activity (i.e., discordant intervals),
the threshold for the construction of Acc and Disc can be increased. In that way, Acc and Disc
would become ‘extreme event detector’ as in its initial proposition (Meskaldji et al., 2015c,a)
and the mathematical foundation of the proposed framework would be still valid.

5.2.5 Conclusion

We presented a framework that enables the estimation of the Laplacian and modularity
spectrum at the voxel level exploiting the full spatial resolution of the fMRI data. Our results
suggest the presence of both functional gradients and community structure at the voxel level
showing fine-grained, distinct brain connectivity patterns based on the leading Laplacian and
modularity eigenvectors. Additionally, a high similarity between the Laplacian and modularity
spectra was observed indicating that both functional gradients and community structure are
present at the voxel level. Interestingly, we showed that the spatial configuration of known
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intrinsic RSNs is not random but instead the Laplacian and modularity leading eigenvectors
provide a natural spatial ordering for these networks. Finally, the proposed framework opens
a new avenue for spectral graph theory research at the voxel level.

Supportive Information

The Human Connectome Project data release (S900, HCP) is publicly accessible (Human
Connectome Project, 2020). All codes used in this study for the implicit estimation of the
modularity at the voxel level can be found in the following repository: https://github.com/
seralouk/Voxel_wise_Laplace_Modularity. The Yeo brain parcellations (Yeo et al., 2011) are
available at the dedicated GitHub repository: https://github.com/ThomasYeoLab/CBIG/tree/
master/stable_projects/brain_parcellation/Yeo2011_fcMRI_clustering.
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6 Summary and future perspectives

The present dissertation explored the consequences of preterm birth on brain function and
tissue volume as well as investigated the effect of an early music intervention on the functional
connectivity in preterm infants. Moreover, the association between brain tissue volumes
following preterm birth and adverse neurodevelopmental outcomes was investigated. To this
end, both task-based and resting-state fMRI paradigms, as well as brain volumetric analyses
were performed. Furthermore, one methodological advancement was developed to enable the
spectral graph theory analysis at the voxel-level. Using this framework the characterization
of the brain’s organizational principles was achieved. In this chapter, a summary of the
main findings is presented along with potential avenues for future work that builds upon the
analyses and clinical contributions presented in the present thesis.

6.1 Summary of findings

The effects of music intervention on task-based and resting-state brain functional connec-
tivity (FC): To investigate, for the first time, the effects of an early music intervention in
preterm infants, we performed both task-based and resting-state fMRI analyses. Brain ef-
fective connectivity changes were explored using a Ppsychophysiological interaction (PPI)
analysis. We unveiled brain networks involved in familiarity and pleasant music processing in
preterm infants and we showed that music exposure during hospitalization promotes brain
auditory processing maturation and can have lasting learning effects on music processing.
We found increased FC between the auditory cortex and regions involved in familiarity and
music processing, such as thalamus, caudate nucleus, putamen, and cingulate cortex, in favor
of the preterm group that underwent the early music intervention. Moreover, using a resting-
state connectomics-based statistical framework and a multivariate partial least squares (PLS)
approach, we demonstrated that preterm infants who were previously repeatedly exposed to
music increased their resting-state FC between specific brain regions. These regions included
the calcarine, angular gurys, amygdala, superior frontal/superior parietal, and temporal areas
that are known to be involved in associative memory and multi-sensory processing. Finally, a
multivariate dosage-dependent effect on this modulation was unveiled. Our novel findings
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highlighted, for the first time, the beneficial aspects of early musical intervention on brain
function in preterm infants and brought new insights for supporting early music exposure to
preterm infants in the NICU.

Brain tissue volumes at term-equivalent-age (TEA) and long-term outcome: We investi-
gated the longitudinal brain development between birth and TEA in preterm infants and how
brain volumes are associated with cognitive and behavioural long-term outcomes. Using
multivariate machine learning classifiers (SVM, LDA), we explored the predictive utility of
brain volumetric data in terms of cognitive/motor outcomes prediction at 18-24 months and 5
years of age, but also behavioural outcome at 5 years of age. We showed that several perinatal
risk factors such as asphyxia, sepsis, and patent ductus arteriosus (PDA) have an impact on
brain tissue volumes and their growth between birth and TEA time-points, without however
being associated with neurodevelopmental outcome. We also found that children’s long-term
cognitive outcome was strongly associated with the parental SES variable. The volumetric data
at birth and TEA contributed to the prediction of motor outcomes at 18-24 months, while brain
volumes at TEA and tissue growth rates contributed to the prediction of cognitive outcome
at 5 years of age. Concerning the behavioural long-term outcomes, we found that volumes
such as WM, amygdala and CB can predict emotional outcome, while perinatal factors such
as sepsis, gender and BPD can predict hyperactivity/inattention problems. Finally, the SES
variable was found to add predictive power to the brain volumes in terms of predicting peer,
conduct, and hyperactivity/inattention problems. Our results provide more evidence on the
prognostic utility of magnetic resonance imaging at TEA, a point that is still controversial.
Moreover, our findings suggest that perinatal brain characteristics in preterm infants may
influence later functional development and that brain tissues at TEA could serve as moderate
biomarkers for the long-term prediction of emotional problems.

Advanced models for neurodevelopment

Prematurity disease progression: Conditions such as preterm birth may change the dy-
namic process of neurodevelopment and lead to adverse neurodevelopmental outcomes.
We unveiled, for the first time, the sequence of biological events along the course of en-
cephalopathy of prematurity by employing an advanced probabilistic model that has been
previously used in Alzheimer’s disease. It is the first time that such a model is employed
in neonatal populations. We provided novel valuable insights into the underlying patho-
physiology. Our novel findings suggest that the first biomarkers to become abnormal are
the brainstem and white matter whereas the last biomarkers are the cerebellum and the
subcortical gray matter. These results might be of clinical use allowing more targeted early
interventions aiming to improve long-term outcomes in preterm infants. This study was
conducted in the context of the European Progression of Neurological Disease (EuroPOND,
http://europond.eu/) consortium. The code used for this analysis has been made available at
https://github.com/seralouk/preterm_ebms_open.

Spectral graph theory at the voxel level: Functional connectome-based studies have revealed
interesting network-related characteristics such as small-world (Bassett and Bullmore, 2016),
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rich-hub (van den Heuvel and Sporns, 2011), and scale-free (power-law degree distribution)
organization of the human brain (Eguíluz et al., 2005). Moreover, spectral graph theory
analysis of the functional connectomes has revealed the presence of a modular (Kabbara
et al., 2019; Betzel et al., 2017; Zhigalov et al., 2017; Sporns and Betzel, 2016), and large-scale
cortical gradient-based underlying organization (Margulies et al., 2016; Huntenburg et al.,
2018). However, due to the high dimensionality of the fMRI data that prohibits the connec-
tomics and spectral graph theory analysis at the voxel level, the brain is usually parcellated
based on a subjective, non-trivial choice of a predefined atlas, at the cost of sacrificing the
high resolution of the data. Importantly, different atlases impact the brain network struc-
ture and connectome-based statistics, and thus affect the analyses and results (Bellec et al.,
2015; Wang et al., 2009; de Reus and van den Heuvel, 2013). In this work, we introduced
a framework that enabled the spectral graph theory analysis at the voxel level overcoming
the aforementioned limitations. To validate our framework, we estimated the voxel-wise
group-level modularity and Laplacian spectrum of 40 subjects from the Human Connec-
tome Project. We identified meaningful, modularity, and Laplacian-driven brain maps of
resting-state functional connectivity assembling the Default-Mode-Network (DMN), Visual
and Auditory networks. Moreover, our results showed the presence of both functional gradi-
ents and community structure at the voxel level revealing fine-grained, dominant, connectivity
patterns. We showed that the spatial configuration of known intrinsic RSNs is not random but
instead a natural spatial ordering for these networks is provided by the leading eigenvectors of
the Laplacian and modularity matrices. Finally, the proposed framework enabled, for the first
time, the characterization of the brain’s fundamental organizational principles at the voxel
level, without the use of a parcellation scheme or dimensionality reduction technique. The
code developed to perform the analysis described in this work has been made available at
https://github.com/seralouk/Voxel_wise_Laplace_Modularity.

6.2 Perspectives of future work

Dynamic brain functional connectivity

The fMRI studies presented in this thesis characterized features of brain function and explored
the effects of an early music intervention on the brain effective and functional connectivity in
preterm infants (see chapter 3). Recent research has demonstrated that functional connectivity
at rest but also during a task is time-varying and not stationary as initially thought (Preti et al.,
2017; Lurie et al., 2020; Fong et al., 2019). Moreover, functional networks can undergo several
re-configurations during MRI scan (Chang and Glover, 2010). Both Psychophysiological
Interaction (PPI) and static connectomics-based analyses used in this thesis did not explore
dynamic features of brain connectivity. Therefore, dynamic methods could provide new
insights into the brain dynamics during task or rest. To this end, an interesting and promising
extension of the PPI analysis presented here would be to investigate the effects of music
intervention using dynamic approaches such as the Psychophysiological Interactions of Co-
activation Patterns (PPI-CAPs) method. PPI-CAPs is a point process-based approach that
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temporally decomposes task-modulated connectivity into dynamic building blocks, which
cannot be captured by current methods such as PPI (Freitas et al., 2020). Furthermore, dynamic
resting-state functional connectivity traits in preterm infants can be explored by employing
a sliding-window and clustering method (Preti et al., 2017). By employing such methods on
our data, we will be able to explore dynamic brain connectivity trait changes related to the
beneficial effect of the early music intervention. This would thus be a natural and feasible
next step for the near future.

Linking brain neural traits and neurodevelopmental outcomes after intervention

This dissertation provided novel findings highlighting the beneficial aspects of early musical
intervention on brain function in preterm infants. An interesting future step would be the
longitudinal follow-up of the preterm infants that underwent the early intervention and the
association of brain functional and structural changes with long-term neurodevelopmental
outcomes. Multivariate approaches such as partial least square correlation (PLSC, McIntosh
and Lobaugh (2004); Krishnan et al. (2011)) can unveil multivariate brain-outcome associa-
tions and shed more light on the neural correlates of adverse or improved long-term outcomes.
Recently, Lejeune and colleagues (Lejeune et al., 2019) reported beneficial long-term effects of
music listening in the NICU on neurodevelopmental outcomes in preterm children at 12 and
24 months of age, however, the association of long-term outcome and brain functional and
structural changes related to early musical intervention exposure remains unexplored. This
can be another feasible next step for the near future.

Spectral graph theory framework extensions

In Chapter 5, section 5.2 we introduced a novel, data-driven method that enables the fine-
grained estimation of the modularity and Laplacian spectra, allowing the spectral graph
theory analysis that the voxel level. One interesting way in which this methodology could
be extended is the integration of spectral clustering for the construction of a data-driven
functional atlas at the voxel level. Spectral clustering (SC) refers to clustering methods that
are employed on the eigenvectors of a pairwise affinity matrix constructed from the data
points aiming to group the underlying network’s nodes. Transitionally, the adjacency (A) and
Laplacian (L) matrix have been used as the affinity matrix. The eigenvectors of those matrices
induce a low-dimensional representation for the data and serve as inputs for the clustering
algorithm. SC does not presume any parametric form for the data and is able to capture the
natural underlying structure of the data (Venkataraman et al., 2009; Craddock et al., 2012; von
Luxburg, 2007). To this end, SC approaches could be employed on the leading eigenvectors
of the modularity matrix (B) that correspond to the most positive eigenvalues. By doing so,
data-driven subdivisions (modules) of the network could be obtained. These modules are,
by definition, internally strongly connected and externally weakly connected. In this way, a
data-driven functional atlas at the voxel level can be built, avoiding the sacrifice of the high
spatial resolution of the fMRI data (e.g. by parcellating the brain using a predefined coarse
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atlas resulting in a network with 100-1000 nodes).

Another interesting extension of the current work is the integration of the resolution parameter
(∞) into the proposed modularity framework. Modularity, as defined by Newman (Newman
and Girvan, 2004; Newman, 2004, 2006b), works well in most situations however, it suffers from
one limitation; it is unable to detect community structure in large networks with many small
communities. If the true number of communities is greater than

p
2m, then the maximum

modularity will tend to combine communities into larger groups and fail to resolve the smallest
divisions in the network (Newman, 2016). To overcome this limitation, a modified version of
the standard modularity has been proposed. In this case, the modularity matrix is defined
as Bi j = Ai j °∞

ki k j

M , where M = 2m =P
i j Ai j and ∞ 2 [0,1] (Reichardt and Bornholdt, 2006).

Smaller and larger values of the ∞ parameter favor the detection of larger and smaller modules,
respectively (Betzel et al., 2017; Newman, 2016). Thus, this would be a natural and feasible
development for the near future, providing more flexibility to the proposed method.

Furthermore, different null models in the modularity criterion could be used. For instance,
the Bernoulli random model can be used that assumes equal probability of appearance for
all edges, preserving the average degree (Newman, 2006a). Additionally, null models that
account for possible correlation between degrees of nodes could be used (Newman, 2002).
Also, the configuration model used in the context of this dissertation can be modified to
exclude self-loops (Massen and Doye, 2005).

Finally, to model extreme co-activations/co-deactivations and oppositions of brain activity (i.e.,
discordant intervals), the threshold for the construction of Accordance (Acc) and Discordance
(Disc) can be increased. In that way, Acc and Disc would become ‘extreme event detector’ as
initially proposed (Meskaldji et al., 2015c,a).

Structure-function relationship

This thesis mainly focused on the relevance of brain function for the study of preterm birth.
It is worth mentioning though that the brain’s underlying structural architecture can affect
brain functional connectivity. It has been shown that the strength and persistence of the
resting-state functional connectivity are constrained by the large-scale anatomical structure
of the human cerebral cortex (Honey et al., 2009; Das et al., 2014). Therefore, by considering
both functional and structural connectivity we could provide novel relevant information that
previous studies may have missed.

Graph signal processing (GSP) has recently gained increasing interest in the neuroimaging field
as a novel framework for brain data analysis that integrates brain structure and function. GSP
tackles the problem of analyzing data defined on irregular domains that can be represented
by a graph model (Huang et al., 2018). In this context, the brain structural connectome
defines the graph backbone with nodes and edges being the brain regions and the white
matter tracts, respectively. Additionally, each frame of BOLD activity is considered a temporal
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sample of a signal living on this graph (e.g. at a specific time-point, each node has a value that
corresponds to the BOLD signal of that region at the given time-point). Traditionally, most
connectomics-based studies in preterm populations have used the functional or structural
connectome independently, and therefore, GSP can be characterized as a promising avenue
to analyze BOLD signals from a new viewpoint in prematurity, by integrating brain structure
with function.
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A Supplementary material for Chapter 3

A.1 Supplementary material for Section 3.1

Behavioral response to the music was assessed by a nurse specialized in developmental
care using a behavioral assessment tool (Martinet et al., 2013) on 12 preterm newborns
between 33 and 37 weeks of gestational age. Also, cardiorespiratory response and oxygen
saturation level were taken during 10 minutes before, during and 10 minutes after the music
intervention. We observed increased oxygen saturation level during and after music listening
and no other modification of the cardiorespiratory system. Furthermore, nurses specialized in
developmental care observed the babies listening (or not) to music and did not notice any
discomfort behavior. We thus concluded that this music was adapted to preterm newborns
(A.2).

155



Appendix A. Supplementary material for Chapter 3

Table A.1 – Demographic and perinatal characteristics of the populations. Differences between
preterm with and without a musical intervention were calculated using the Mann-Whitney
test or the Fisher test. We observed no differences between age at scan between the 3 groups
(ANOVA, p 0.11). Socioeconomic status (Largo et al., 1989) was assessed based on maternal
education and paternal occupation (range, 2-12, with 2 the highest score).

Full-term
n=9

Preterm music
(PM) n=9

Preterm control
(PC) n=9

PM versus PC
p value

Gestational age at birth,
weeks, mean (SD)

28.70 (± 2.5) 28.70 (± 2.0) 0.79

Birth Weight,
gram, mean (SD)

3324.4 (± 366.1) 1151.7 (± 329.62) 1051.1 (±265.5) 0.65

Small for gestational age,
n(%)

0 1/9 (11%) 2/9 (22%) 1

Birth Height, centimeter,
mean (SD)

49.33 (± 1) 37.9 (± 3.4) 35.8 (± 2.7) 0.65

Birth head circumference,
(cm) mean (SD)

34.22 (± 1.30) 27 (± 3.1) 25.6 (± 2.4) 0.28

Female,
n (%)

4/9 (44.44%) 4/9 (44.44%) 5/9 (55.56%) 1

Neonatal asphyxia,
n(%)

0 0 0 N.A

Bronco-pulmonary
dysplasia, n(%)

0 3/9 (33%) 4/9 (44%) 1

Intraventricular
haemorrhages
(grade 1-2), n(%)

0 2/9 (22%) 3/9 (33%) 1

Early and late onset
sepsis, n(%)

0 2/9 (22%) 3/9 (33%) 1

Number of
music/no-music
intervention , mean (SD)

NA 25.2 (± 9.8) 25.9 (± 5.6) 0.75

Gestational age at scan,
weeks, mean (SD)

39.63 (± 1.02) 40.25 (± 0.51) 40.40 (± 0.77) 0.53

Socio-economic
score (range 2-12),
mean (SD)

4.88 (± 2.87) 6.4 (± 3.7) 4.9 (± 2.5) 0.36
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Table A.2 – Heart rate, respiratory rate and oxygen saturation level in 12 preterm infants
listening to the music created by A. Vollenweider. Each infant listened one time to the music
and physiological responses were registered during 10 min before, during music listening and
10 minutes after. We used paired t-test to assess cardio-respiratory and oxygen saturation level
responses to music.

Before
Mean

During
Mean

After
Mean

Paired t-test
Before vs During
(p-value unco.)

Paired t-test
Before vs After
(p-value unco.)

Paired t-test
During vs After
(p-value unco.)

Heart rate
(beats/min)

158.74 161.29 161.37 0.453 0.354 0.971

Respiratory rate
(breaths/min)

48.94 49.86 48.29 0.723 0.806 0.431

Oxygen saturation
level (%)

97.15 97.73 97.83 0.062 0.056 0.651

Table A.3 – Two sample t-test: Significant activations for Preterm-Music >Preterm-Control
group comparison (seed: right primary auditory cortex).

Preterm-Music >Preterm-Control,
Original-Music >Tempo modification,
Seed: Right primary auditory cortex
Region Number of voxels T value P value (FWE)
R Thalamus 272 6.64 0.009
L Caudate and MCC 257 5.13 0.013

Table A.4 – Two sample t-test: Significant activations for Preterm-Music >Full-Term control
group comparison (seed: right primary auditory cortex).

Preterm-Music >Full-Term control,
Original Music >Tempo modification,
Seed: Right primary auditory cortex
Region Number of voxels T value P value (FWE)
MCC 474 4.94 0.001

Table A.5 – One sample t-test: Significant activations for Preterm-Music group at group level
(seed: Left primary auditory cortex).

Preterm-Music,
Original Music >Tempo modification,
Seed: Left primary auditory cortex
Region Number of voxels T value P value (FWE)
MCC 208 8.92 0.007
R Caudate and Putamen 171 7.98 0.01
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A.2 Supplementary material for Section 3.2

Figure A.1 – The enrollment procedure and further information of the exclusion criteria.

Table A.6 – Population Characteristics.

PM PC FT
N 15 15 16

GA birth (weeks) 29.16 ± 2.14 28.95 ± 1.83 39.50 ± 1.08
GA at scan (weeks) 40.21 ± 0.55 40.50 ± 0.77 39.78 ± 1.05
Socioeconomic status (SES) 6.46 ± 3.54 6.34 ± 3.47 4.53 ± 3.06
Birth weight (g) 1203.67 ± 351 1161 ± 287 3333.43 ± 334
Cranial perimeter at birth (cm) 27.05 ± 2.82 26.17 ± 2.25 34.46 ± 1.14
Height at birth (cm) 37.84 ± 3.20 36.47 ± 4.02 49.68 ± 1.49
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Table A.7 – Intervention details for the Preterm-Music group.

PM (n=15)
# of music listening during hospitalization

Subject_001 30
Subject_002 31
Subject_006 7
Subject_007 28
Subject_008 33
Subject_012 25
Subject_016 33
Subject_028 11
Subject_032 30
Subject_044 9
Subject_047 24
Subject_048 24
Subject_051 28
Subject_052 35
Subject_054 27
Mean (std) 25 (8.92)

PLSC implementation details

The core of the PLSC method is the singular value decomposition (SVD) of the cross-covariance
matrix R = USVT defined as R = YTX, X 2RNoutcomes£Ni mag i ng , where Y is a matrix storing the out-
come variables (one outcome variable in this study) for each subject as rows (Y 2RNsub j ect s£Noutcomes )
and X is a matrix storing the imaging variables (X 2RNsub j ect s£Ni mag i ng ). In this study, the cross-
covariance matrix R is built using the z-scored (across subjects) matrices X and Y (µ= 0,æ= 1).
Given that we only have one outcome variable in this study, the cross-covariance matrix R has
dimension [1£90].

The SVD of R results in correlation components each composed of a set of outcomes (columns
of U) and brain salience weights (columns of V). In the present study we only have one PLSC
component since R has dimension [1£90] as explained above. Additionally, this component
is associated with a corresponding singular value (stored on the diagonal of S) that specifies
the explained correlation along this dimension. Outcome (U) and brain imaging (V) salience
weights indicate how strongly each input variable contributes to the multivariate outcome
behavior-brain correlation in this certain component. In this study the weights range lies
between °1 and 1 since we normalized the data (z-scoring of outcome and brain network
input features across subjects) before the computation of the cross-covariance matrix R and
thus, these salience weights can be interpreted similarly to correlation values.

To assess the statistical significance of this component, permutation testing was performed.
Briefly, the rows of Y 2RNsub j ect s£Noutcomes (i.e., the outcome variable’s elements) were permuted
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Table A.8 – Regions of interest included in AAL-atlas.

Labels Abbreviation used in figures Regions full name

1 PreCG Precental gyrus
2 SFGdor Superior frontal gyrus, dorsolateral
3 ORBsup Superior frontal gyrus, orbital part
4 MFG Middle frontal gyrus
5 ORBmid Middle frontal gyrus, orbital part
6 IFGoperc Inferior frontal gyrus, opercular part
7 IFGtriang Inferior frontal gyrus, triangular part
8 ORBinf Inferior frontal gyrus, orbital part
9 ROL Rolandic operculum
10 SMA Supplementary motor area
11 OLF Olfactory cortex
12 SFGmed Superior frontal gyrus, medial
13 ORBsupmed Superior frontal gyrus, medial orbital
14 REC Gyrus rectus
15 INS Insula
16 ACG Anterior cingulate and paracingulate gyri
17 DCG Median cingulate and paracingulate gyri
18 PCG Posterior cingulate gyrus
19 HIP Hippocampus
20 PHG Parahippocampal gyrus
21 AMYG Amygdala
22 CAL Calcarine fissure and surrounding cortex
23 CUN Cuneus
24 LING Lingual gyrus
25 SOG Superior occipital gyrus
26 MOG Middle occipital gyrus
27 IOG Inferior occipital gyrus
28 FFG Fusiform gyrus
29 PoCG Postcentral gyrus
30 SPG Superior parietal gyrus
31 IPL Inferior parietal, supramarginal and angular gyri
32 SMG Supramarginal gyrus
33 ANG Angular gyrus
34 PCUN Precuneus
35 PCL Paracentral lobule
36 CAU Caudate nucleus
37 PUT Lenticular nucleus, putamen
38 PAL Lenticular nucleus, pallidum
39 THA Thalamus
40 HES Heschl gyrus
41 STG Superior temporal gyrus
42 TPOsup Temporal pole: superior temporal gyrus
43 MTG Middle temporal gyrus
44 TPOmid Temporal pole: middle temporal gyrus
45 ITG Inferior temporal gyrus
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5000 times and within each iteration, the permuted Rperm, Uperm, Sperm, Vperm were
estimated. Next, the p-value was estimated from the permutation null distribution by counting
the number of permuted singular values (Sperm) above the observed singular value (S) of the
PLSC component.

Finally, to evaluate the stability of brain and outcome salience weights (i.e., the elements of
the matrices U and V) , 200 bootstrap samples of X and Y with replacement were performed
(sampling) and the PLSC analysis was repeated obtaining the bootstrapped outcome and
brain salience weights. In this study, we report significant PLSC results (saliences) in terms of
bootstrap mean and standard errors for the single PLSC component which was found to be
significant based on the permutation testing.

Permutation testing for the PLSC analysis

To assess the statistical significance of the computed PLSC component, 5000 permutation
tests were performed. The p-value was estimated from the permutation null distribution by
counting the number of times that the permuted singular values (Sp) were above the observed
true singular value (S) of the PLSC component. The permutation null distribution is shown in
below where in y-axis we have the frequency and in x-axis the singular values obtained by the
permutation testing. The red vertical line represents the true observed singular value of the
PLSC component which was found to be statistically significant based on the permutation
testing (p=0.043).

Figure A.2 – The permutation null distribution. The histogram of the null distribution of the
singular values is presented among with the observed (red line) singular value of the significant
latent component. Y-axis represents frequency and x-axis the singular values obtained by the
permutation testing.
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Table A.9 – Mean bootstrap weights and 5th to 95th percentiles for the significant component.

Mean bootstrapped
brain salience weights

Lower bound of CI Upper bound of CI

-0.092 -0.167 0.064
-0.101 -0.219 0.03
-0.07 -0.17 0.092

-0.079 -0.172 0.121
0.062 -0.05 0.138
-0.1 -0.2 0.017

-0.048 -0.176 0.157
-0.161 -0.248 -0.073
-0.041 -0.173 0.133
-0.085 -0.175 0.011
-0.034 -0.171 0.097
-0.019 -0.154 0.108
-0.134 -0.233 -0.011
0.034 -0.12 0.127
-0.086 -0.207 0.069
-0.054 -0.169 0.021

0.03 -0.103 0.136
-0.089 -0.218 0.067
-0.015 -0.154 0.133
0.046 -0.127 0.142
0.069 -0.047 0.144
0.028 -0.152 0.137
-0.141 -0.202 0.02
-0.116 -0.2 -0.006
-0.109 -0.177 -0.014
-0.027 -0.134 0.039
0.004 -0.143 0.098
0.034 -0.058 0.102
0.008 -0.171 0.14
-0.048 -0.167 0.108
-0.009 -0.174 0.126
0.033 -0.091 0.138
-0.102 -0.168 0.098
-0.128 -0.204 0.142
-0.09 -0.186 0.073

-0.148 -0.199 -0.077
-0.082 -0.166 0.046
-0.156 -0.229 -0.05
-0.081 -0.183 0.04
-0.116 -0.195 -0.041
0.083 0.005 0.159
-0.054 -0.212 0.08
-0.047 -0.193 0.065
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0.009 -0.126 0.116
-0.006 -0.114 0.121
-0.016 -0.135 0.1
-0.083 -0.19 0.041
-0.045 -0.149 0.086
-0.004 -0.127 0.144
0.005 -0.125 0.128
0.041 -0.091 0.127
0.037 -0.078 0.14
-0.153 -0.197 -0.096
-0.002 -0.134 0.122
-0.089 -0.187 0.018
-0.185 -0.236 -0.123
-0.079 -0.169 0.116
-0.056 -0.129 0.044
-0.026 -0.163 0.141
-0.017 -0.144 0.077
-0.134 -0.218 -0.006
-0.135 -0.192 -0.026
-0.148 -0.29 0.01
0.021 -0.103 0.139
-0.098 -0.216 0.057
-0.046 -0.155 0.112
-0.093 -0.184 0.059
-0.081 -0.169 0.11
-0.152 -0.23 -0.065
-0.019 -0.15 0.079
-0.024 -0.139 0.05
-0.014 -0.144 0.139
0.056 -0.038 0.133
0.099 0 0.181
0.041 -0.129 0.126
-0.086 -0.205 0.063
-0.165 -0.22 -0.01
-0.107 -0.185 0.101
-0.124 -0.207 0.03
-0.041 -0.173 0.082
-0.012 -0.134 0.143
-0.067 -0.188 0.083
-0.003 -0.154 0.106
-0.022 -0.129 0.122
-0.099 -0.166 0.003
-0.128 -0.229 -0.003

0.09 0.028 0.17
-0.132 -0.219 0.05
-0.055 -0.195 0.095
-0.002 -0.137 0.066
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Table A.10 – Statistical tests for clinical variables.

Clinical Variables Hypothesis Testing Conclusion Critical value & p-value

Gender FT vs PM vs PC
No significant
difference

X2(2) = 0.035, p-value = 0.982

Number of times
with headphones

PM versus PC
No significant
difference

F(1,29) = 0.147, p-value = 0.703

Number of images (run 1) FT vs PM vs PC
No significant
difference

F(2,43) = 1.806, p-value = 0.176

Number of images (run 2) FT vs PM vs PC
No significant
difference

F(2,43) = 1.259, p-value = 0.294

Coil type FT vs PM vs PC
No significant
difference

F(2,43) = 0.370, p-value = 0.692

GA birth PM versus PC
No significant
difference

F(1,29) = 0.082, p-value = 0.776

GA MRI FT vs PM vs PC
No significant
difference

F(2,43) = 2.687, p-value = 0.079

Socioeconomic Status PM vs PC
No significant
difference

F(1,29) = 0.0108, p-value = 0.917

Birth Weight (g) PM vs PC
No significant
difference

F(1,29) = 0.132, p-value = 0.718

Cranial Perimeter Birth (cm) PM vs PC
No significant
difference

F(1,29) = 0.594, p-value = 0.447

Height birth (cm) PM vs PC
No significant
difference

F(1,29) = 1.05, p-value = 0.312

Intrauterine growth restriction
(yes/no)

PM vs PC
No significant
difference

X2(1) = 0.0, p-value = 1.0

Microcephaly (yes/no) PM vs PC
No significant
difference

X2(2) = 3.012, p-value = 0.221

Chorioamnionitis (yes/no) PM vs PC
No significant
difference

X2(1) = 0.370, p-value = 0.542

Asphyxia (yes/no) PM vs PC
No significant
difference

X2(1) = 3.334, p-value = 0.067

BPD (yes/no) PM vs PC
No significant
difference

X2(1) = 0.681, p-value = 0.408

IVH (yes/no) PM vs PC
No significant
difference

X2(1) = 0.240, p-value = 0.624

Sepsis (yes/no) PM vs PC
No significant
difference

X2(2) = 1.366, p-value = 0.505

NEC (yes/no) PM vs PC
No significant
difference

X2(1) = 1.034, p-value = 0.309

Patent ductus arteriosus
(yes/no)

PM vs PC
No significant
difference

X2(1) = 0.370, p-value = 0.542

* ANOVA for numerical variables.
* Chi-squared test for categorical variables.
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B.1 Supplementary material for Section 4.1

MRI acquisition parameters

The parameters used for the acquisition of the T2-weighted images in this study are summa-
rized in the following table.

Table B.1 – MRI acquisition parameters for T2-weighted images.

Machine Field strength (T) Echo time (ms) Repetition time (ms) Echo train length Voxel size (mm3) Birth scans TEA scans

Philips Eclipse 1.5 156 4000 16 0.7 x 0.7 x 1.5 11 8
Philips Achieva 1.5 150 4000 16 0.7 x 0.7 x 1.5 39 41
Siemens Avanto 1.5 150 5700 15 0.8 x 0.8 x 1.2 31 2
Siemens Trio Tim 3 150 4600 15 0.8 x 0.8 x 1.2 3 33

Data dependency on scanner type

Table B.2 – Effect of scanner type on tissue volumes, controlling for GA at birth (analysis of
covariance).

Tissue volume
At birth At TEA
Scanner type GA birth Scanner type GA birth
F P-value F P-value F P-value F P-value

GM .94 .426 202.24 <.001 .71 .552 .10 .758
UWM 1.64 .186 96.54 <.001 .48 .700 .11 .742
SGM 2.31 .083 158.14 <.001 .82 .489 .05 .825
CSF 1.80 .153 28.03 <.001 1.82 .151 .70 .404
CB .89 .453 173.89 <.001 1.09 .360 .13 .716
IC 1.61 .193 123.74 <.001 .59 .625 .00 .992
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Figure B.1 – Classification ROC curves using the following four sets of birth weight normalized
features (without GA and SES) (i) only the birth data (red lines), (ii) only the TEA data (yellow
lines), (iii) both birth and TEA data (orange lines), (iv) brain volume GR, and, for comparison,
(v) only GA and SES.

B.2 Supplementary material for Section 4.2

Cohort characteristics

Table B.3 – The population characteristics

Characteristics
Analysis with
volumetric data
n = 80

Analysis with
clinical data
N = 86

Boys, n 36 (45%) 41 (47.7 %)
Mean gestational age (SD), weeks
<28 GW, n
Extreme, weeks

27.8 (1.64)
46 (57.5%)
23.9 - 32

27.8 (1.65)
49 (57 %)
23.9 - 32

Mean birthweight (SD), grams
<10th percentile

989 (231)
9 (12%)

992 (240.7)
10 (11.6%)

Mean birth head circumference, cm
<10th percentile

25 (1.9)
9 (11%)

25 (1.9)
10 (11.6%)

BPD, n 30 (37.5%) 30 (37.5%)
Sepsis infection, n 23 (28.7%) 24 (28%)
Periventricular leukomalcia, n 2 (2.7%) 4 (4.6%)
Low socio-economic status, n 38 (47.5%) 41 (47.7%)
Mean age atbrain MRI, weeks 40.1 (SD 0.8) 40 (SD 0.85)
Median age at assessment (extreme),
months

61 (59 – 69) 60 (59 - 69)

Median K-ABC (extreme)
K-ABC >85
K-ABC >70; <85
K-ABC <70
K-ABC I

98 (54 – 126)
64 (86.5%)
10 (13.5%)
6 (7.5%)
36 (48.5%)

97 (54 - 126)
69 (80%)
11 (13%)
6 (7%)
41 (47.7%)
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Table B.4 shows the population characteristics of the participants included in this study.
The clinical and SES data were available for all n=86 subjects, whereas the volumetric data
were available only for n=80 subjects due to amygdala volume missing data. There was no
significant difference in gender distribution, GA at birth, birth weight z-score, and birth head
circumference between the 86 subjects for whom clinical data were available and the subgroup
of 80 (out of the 86) children for whom volumetric data were available. In addition, the rates of
BPD, sepsis, and PVL were comparable, as well as the SES.

Table B.4 – The population characteristics of the participants included in this study.

Population Characteristics
SDQ Total Difficulties
score normal N = 75

SDQ Total Difficulties
score at risk N = 11

P-value

Perinatal data

Male gender, n (%) 36 (48%) 5 (45.5 %) 0.567
GA, weeks, mean (SD), range 27.8 (1.68) 24 – 32 27.9 (1.54) 26 - 31 0.887
Birthweight, g, mean (SD) 998 (248) 955 (184) 0.582
Birth head circumference, cm, mean (SD), range 25.1 (1.9) 22 – 30 24.77 (1.7) 23 - 28 0.602
BPD, n (%) 28 (37.3%) 3 (27.3%) 0.387
Sepsis, n (%) 21 (28%) 3 (27.3%) 0.635
PVL, n (%) 4 (5.3%) 0 (0%) 0.572

Parental socio-economic status

SES score, mean (SD), range 6 (3) 2 - 12 8 (3) 3 – 11 0.080

Cognitive outcome at 5 years

K-ABC score, mean (SD), range 96 (14.2) 54 - 126 86 (18.7) 54 - 108 0.035
Score <85, n (%) 12 (16%) 3 (27.3%) 0.169
K-ABC I 38 (50.6%) 4 (36.4%) 2.88
K-ABC II 37 (49.4%) 7 (63.6%) 2.88

Brain development at TEA, n=80
Absolute volumes, ml SDQ SDQ P-value

normal N = 69 at risk N = 11

WM , mean (SD) 147.64 (16.15) 148.77 (14.52) 0.830
CGM, mean (SD) 166.02 (24.03) 164.29 (20.53) 0.824
DSGM, mean (SD) 21.14 (2.07) 21.09 (1.09) 0.939
Amygdala , mean (SD) 0.817 (0.14) 0.87 (0.19) 0.212
CB, mean (SD) 22.96 (3.71) 21.14 (2.32) 0.123
CSF, mean (SD) 101.77 (25.19) 95.31 (26.71) 0.441
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Figure B.2 – Averages of brain absolute volumes at TEA. Boxplots showing the brain absolute
volumes for white matter (WM), cerebrospinal fluid (CSF), amygdala, cerebellum (CB), cortical
gray matter (CGM) and deep subcortical gray matter (DSGM) of the two groups of participants
based on the SDQ total difficulties score variable. Blue and orange color represents the normal
and at risk group, respectively. No statistically significant differences between the volumetric
data of the two groups were observed. The asterisk represents the mean value whereas the
black line inside the bodies of the boxplots depicts the median values.

Figure B.3 – The PCA explained variance. The first component (PC1) captures 50% of the
variance whereas the second (PC2) captures 20% of the variance. The contribution of the
remaining components is negligible for this analysis (each explains less than 15%).
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Figure B.4 – Post hoc analysis: Boxplots (star marker: mean value) of the behavioral variable of
interest i.e., Hyperactivity/inattention subscale, grouped by the most important features (i.e.,
Gender, Sepsis) based on the Mean Decrease Accuracy (MDA) method. The asterisk represents
the mean value, whereas the black horizontal line in the boxes depicts the median value.
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C.1 Supplementary material for Section 5.1

Table C.1 shows the ANCOVA results for the effect of scanner on the brain volumes. No
significant effects of the scanner type on the brain volumes after controlling for the GA at birth
were observed.

Tissue volume Scanner type GA at birth
F P-value F P-value

CGM 1.55 .193 12.44 <.001
WM .825 .512 .863 .355
SGM 1.58 .198 6.24 .014
CSF .388 .816 .729 .395
Cerebellum 1.41 .236 5.31 .023
Brainstem .967 .429 12.56 <.001

Table C.1 – Analysis of Covariance for the effect of scanner type on tissue brain volumes,
controlling for the GA at birth.

To test for statistically significant differences in the brain tissue volumes at TEA between the
two groups, student t-tests are used. The exact p-values of the statistical tests are reported in
Table C.2. The white matter, CSF and brainstem tissue volumes were found to be statistically
different.
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Table C.2 – Absolute cerebral tissue volumes measured at TEA. Student t-tests were performed
to test for statistical significant differences between the PM and FT groups.

Tissue volume
mean (SD)

PM FT P-value

CGM .354 (.022) .359 (.027) .165
WM .327 (.022) .354 (.019) <.001
SGM .047 (.003) .048 (.004) .213
CSF .209 (.037) .174 (.033) <.001
Cerebellum .05 (.006) .052 (.006) .052
Brainstem .012 (.001) .014 (.001) <.001

Figure C.1 shows the boxplots of the volumetric data for the cortical gray matter (CGM),
white matter (WM), subcortical gray matter (SGM), cerebrospinal fluid (CSF), cerebellum (CB)
and brainstem of the two groups of participants. Student t-tests were performed to test for
statistical significant differences between the PM and FT groups.
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Figure C.1 – Boxplots of the absolute cerebral tissue volumes (in ml) at TEA (expressed as
medians and means with 25/75 percentile box, 10th/90th percentile error bars, and outliers).
Student t-tests were performed to test for statistical significant differences between the PM
and FT groups. ns refers to "no significant" outcome with a P-value > 0.05 whereas, four
asterisks (****) indicate statistical significance at P ∑ 0.0001.
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Figure C.2 shows the event probabilities of the input biomarkers. We observe an overlap in the
distributions of the biomarkers across groups and a tendency of decreased volumes for the
preterm infants compared to control full-terms (except for CSF volume, see also Figure C.1).

Figure C.2 – The individual event probabilities of the input biomarkers as estimated by the
KDE-EBM model for the two groups: PT (blue) and FT (red) among with the probability of
event transition (yellow line).
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C.2 Supplementary material for Section 5.2

Fig. C.3 (a) & (b) show the eigenvectors of the normalized graph Laplacian matrix correspond-
ing to the first smallest (omitting the first i.e, ∏1 = 0,v1 = D

1
2 1) and largest eigenvalues using

Acc and Disc, respectively.
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(a) Leading smallest eigenvectors of L using Acc

(b) Leading largest eigenvectors of L using Di sc

Figure C.3 – Laplacian leading eigenvectors: (a) and (b) show the first two leading modularity
eigenvectors in the case where the adjacency was the Accordance matrix or the Discordance
matrix, respectively. Positive and negative eigenvector entries are represented by red and blue
colors, respectively. MNI coordinates: x=4, y=-50, z=29.

Fig. C.4 (a) & (b) show the modularity eigenvectors corresponding to the first most positive
and most negative eigenvalues using Acc and Disc, respectively.
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(a) First two leading positive eigenvectors of B using Acc

(b) First two leading negative eigenvectors of B using Di sc

Figure C.4 – Modularity leading eigenvectors: (a) and (b) show the first two leading modularity
eigenvectors in the case where the adjacency was the Accordance matrix or the Discordance
matrix, respectively. Positive and negative eigenvector entries are represented by red and blue
colors, respectively. MNI coordinates: x=4, y=-50, z=29.

Fig. C.5 (a) shows the absolute value of the cosine similarity between the eigenvectors of the
normalized graph Laplacian when constructed using Acc and Disc as adjacency, respectively.
Fig. C.5 (b) shows the same information for the modularity matrix.

177



Appendix C. Supplementary material for Chapter 5

(a) Cosine similarity between U L
acc , U L

di sc

(b) Cosine similarity between U B
acc , U B

di sc

Figure C.5 – Cosine similarity between the spectra: (a) and (b) show the absolute value of the
cosine similarity of the eigenvectors when the adjacency was the Accordance or Discordance
matrix, for the Laplacian and modularity matrix, respectively.

Fig. C.6 shows that the spatial configuration of the seventeen Yeo RSNs is not random with
respect to the estimated Laplacian and modularity leading eigenvectors.
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Figure C.6 – The Laplacian principle gradient’s values (top) and the modularity leading eigen-
vector’s values (bottom) for each of the seventeen Yeo resting-state networks. For the sake of
simplicity, here we visualize only the results based on the Accordance as adjacency matrix.
The asterisks represent mean values. Colors represent the exact same colors used to describe
the networks in Yeo et al. (2011).

Fig. C.7 illustrates an example of four resting-state networks (RSN) encoded in the leading
modularity eigenvectors.
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Figure C.7 – Example of four resting-state networks (RSN) recovered based on the leading
modularity eigenvectors. Numbers indicate slice coordinates in MNI space. Positive and
negative eigenvector entries are represented by red and blue colors, respectively. First row:
visual, second row: auditory, third row: DMN and fourth row: fronto-parietal.
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Zöller, D., Sandini, C., Karahanoğlu, F. I., Padula, M. C., Schaer, M., Eliez, S., and Ville, D.
V. D. (2019). Large-scale brain network dynamics provide a measure of psychosis and
anxiety in 22q11.2 deletion syndrome. Biological Psychiatry: Cognitive Neuroscience and
Neuroimaging, 4(10):881–892.

220



Serafeim Loukas

Nationality: Greek
� seralouk@gmail.com

� www.linkedin.com/in/serafeim-loukas
� https://github.com/seralouk
� https://bit.ly/3vPS3l8

Education

2017– Present PhD student in Electrical Engineering school Swiss Federal Institute of
Technology Lausanne, Lausanne, Switzerland.

2015–2017 Master in Neuroscience (M.Sc.) University of Geneva, Geneva, Switzer-
land
-Thesis title: "Effective connectivity analysis of brain networks in preterm
infants". Supervision : Prof. Dimitri Van De Ville, Prof. Petra Huppi

2010–2015 Diploma in Electrical and Computer Engineering Five years program at
National Technical University of Athens, Athens, Greece
-Thesis title: "Analysis of biochemical phenotypes of the carotid atheroscle-
rosis: Correlations with image-based and clinical indicators using cluster-
ing methods". Supervision : Prof. Konstantina Nikita

2007–2010 General Lyceum Certificate Aristotelian General Lyceum, Corinth,
Greece
-Participation to the Pan-Hellenic Exams 2009-2010, (19.242/20.000
points)

Awards and distinctions

• Summa Cum Laude Merit Award at the International Society for Magnetic Resonance in
Medicine Annual Meeting (ISMRM) 2020.

• Best poster presentation award, Neuroscience Day (2016) at Campus Biotech, Geneva

Best poster award among 30 neuroscience posters

221



Research Experience

2017 - 2021 Doctoral Candidate - Swiss Federal Institute of Technology Lausanne &
University of Geneva Lausanne & Geneva, Switzerland
-Responsibilities: Research, scientific writing, project management, super-
vision of students, teaching activities.
-Dissertation Title: "Brain connectomics: multivariate and predictive
models for neurodevelopment".

2015–2017 Master Thesis - University of Geneva, Geneva, Switzerland
-Thesis title: "Effective connectivity analysis of brain networks in preterm
infants".

2010–2015 Bachelor Thesis - National Technical University of Athens, Athens,
Greece
-Thesis title: "Analysis of biochemical phenotypes of the carotid atheroscle-
rosis: Correlations with image-based and clinical indicators using cluster-
ing methods".

Teaching activities

2017 - 2021

• Image Processing I (MICRO-511)* & Image Processing II (MICRO-512)*

• Signal processing for functional brain imaging (MICRO-513)*

* Master courses at the Swiss Federal Institute of Technology Lausanne (EPFL)

Professional experience

2020 - Present Official author at Medium Objective: Publishing high-quality scientific
articles for Towards Data Science & AI In Plain English publications

2017 - Present Ambassador of the E3 – EPFL Excellence in Engineering Summer in-
ternship program EPFL, Geneva, Switzerland
Responsibilities: Contact and motivate students to apply for the E3 pro-
gram. Promotion of the engineering school and research activities

Foreign Languages

Greek Native
English Proficient User: C2
French Intermediate User: B1

222



List of Publications & Presentations

Journal Papers

• Loukas, S.*, Lordier, L.*, Grouiller, F., Vollenweider, A., Vasung, L., Meskaldji, D.-E., Lejeune,
F., Pittet, M.P., Borradori-Tolsa, C., Lazeyras, F., Grandjean, D., Van De Ville, D., Hüppi, P.S.,
2019. Music processing in preterm and full-term newborns: A psychophysiological interac-
tion (PPI) approach in neonatal fMRI. NeuroImage 185, 857–864.
DOI: https://doi.org/10.1016/j.neuroimage.2018.03.078

• Loukas, S.*, Lordier, L.*, Meskaldji, D.-E., Filippa, M., Sa de Almeida, J., Van De Ville, D.,
Hüppi, P.S., 2020. Musical memories in newborns: A resting-state functional connectivity
study (Submitted to Human Brain Mapping Journal, 2021)

• Gui, L., Loukas, S*., Lazeyras, F., Hüppi, P.S., Meskaldji, D.-E., Borradori Tolsa, C., 2019. Lon-
gitudinal study of neonatal brain tissue volumes in preterm infants and their ability to pre-
dict neurodevelopmental outcome. NeuroImage 185, 728–741.
DOI: https://doi.org/10.1016/j.neuroimage.2018.06.034

Oral Presentations

• Loukas, S., (2017)."Music training enhances functional connectivity in preterm newborns",
CIBM/BBL day 2017, Geneva, Switzerland

• Loukas, S., (2019). "Investigating the effects of an early intervention in preterm newborns: A
resting-state functional connectivity study", ISMRM Annual Meeting 2019, Montreal, Canada

Conference Abstracts Presentations

• Loukas, S., et al., (2020). "Resting State Functional Connectivity and Angiogenesis-related
Gene Co-Expression Networks in early brain development", Proc. Intl. Soc. Mag. Reson.
Med. 28, ISMRM, Virtual conference.
(Link: https://index.mirasmart.com/ISMRM2020/PDFfiles/4588.html)

• Loukas, S., et al., (2019). "Investigating the effects of an early intervention in preterm new-
borns: A resting-state functional connectivity study", Proc. Intl. Soc. Mag. Reson. Med. 27,
ISMRM, Montreal, Canada.
(Link: https://index.mirasmart.com/ISMRM2019/PDFfiles/0045.html)

• Loukas, S., et al., (2018). "Adaptive linear discriminant analysis for complex networks to
study extreme prematurity and intrauterine growth restriction effects at school age", Proc.
Intl. Soc. Mag. Reson. Med. 26, ISMRM, Paris, France.
(Link: https://index.mirasmart.com/ISMRM2018/PDFfiles/5214.html)

• Loukas, S., et al., (2017). "Music training enhances functional connectivity in preterm new-
borns", Proc. Intl. Soc. Mag. Reson. Med. 25 (2017), ISMRM, Hawaii, USA.
(Link: http://indexsmart.mirasmart.com/ISMRM2017/PDFfiles/4103.html)

223


	Acknowledgements
	Abstract (English & Français)
	Contents
	Introduction
	Motivation
	Dissertation organization and main contributions

	Background
	Magnetic resonance imaging (MRI) and brain research
	Structural connectivity
	Functional connectivity
	Brain tissue volumes

	Data analysis tools
	Task-based fMRI for brain function
	Resting-state functional connectivity
	Brain volumetric data for brain abnormalities

	Preterm birth
	Preterm birth and adverse outcome
	Preterm birth and brain alterations
	Early interventions

	Challenges in neonatal neuroimaging research

	Unveiling the effects of intervention in preterm infants with task-based and resting-state fMRI
	Journal Article: Music processing in preterm and full-term newborns: A psychophysiological interaction (PPI) approach in neonatal fMRI
	Introduction
	Methods
	Results
	Discussion
	Conclusion and future implications

	Journal Article: Musical memories in newborns: A resting-state functional connectivity study
	Introduction
	Methods
	Results
	Discussion
	Conclusion


	Predictive utility of brain volumes for cognitive and behavioural long-term outcomes
	Journal Article: Longitudinal study of neonatal brain tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome
	Introduction
	Methods
	Results
	Discussion
	Conclusion

	Journal Preprint: Behavioral outcome of very preterm children at five years of age: Prognostic utility of brain tissue volumes at TEA and perinatal factors
	Introduction
	Methods
	Results 
	Discussion
	Conclusion


	Advanced models for neurodevelopment
	Journal Preprint: Fine-grained, image-based disease progression characterization of prematurity
	Introduction
	Methods
	Results
	Discussion
	Conclusion

	Journal Preprint: A new framework for high-resolution spectral analysis of resting-state fMRI functional connectivity
	Introduction
	Methods
	Results
	Discussion
	Conclusion


	Summary and future perspectives
	Summary of findings
	Perspectives of future work

	Supplementary material for Chapter 3
	Supplementary material for Section 3.1
	Supplementary material for Section 3.2

	Supplementary material for Chapter 4
	Supplementary material for Section 4.1
	Supplementary material for Section 4.2

	Supplementary material for Chapter 5
	Supplementary material for Section 5.1
	Supplementary material for Section 5.2

	Bibliography
	Curriculum Vitae

